1
|
Bernardini G, van Iersel L, Julien E, Stougie L. Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning. Mol Phylogenet Evol 2024; 199:108137. [PMID: 39029549 DOI: 10.1016/j.ympev.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on binary trees, we present FHyNCH, the first algorithmic framework to heuristically solve the Hybridization problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherry-picking technique, recently proposed to solve the same problem for binary trees, with two carefully designed machine-learning models. We demonstrate that our methods are practical and produce qualitatively good solutions through experiments on both synthetic and real data sets.
Collapse
Affiliation(s)
| | - Leo van Iersel
- Delft Institute of Applied Mathematics, Delft, The Netherlands
| | - Esther Julien
- Delft Institute of Applied Mathematics, Delft, The Netherlands.
| | - Leen Stougie
- CWI, Amsterdam, the Netherlands; Vrije Universiteit, Amsterdam, The Netherlands; INRIA-Erable, France
| |
Collapse
|
2
|
Bernardini G, van Iersel L, Julien E, Stougie L. Constructing phylogenetic networks via cherry picking and machine learning. Algorithms Mol Biol 2023; 18:13. [PMID: 37717003 PMCID: PMC10505335 DOI: 10.1186/s13015-023-00233-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them is a fundamental challenge in evolutionary studies. Existing methods are computationally expensive and can either handle only small numbers of phylogenetic trees or are limited to severely restricted classes of networks. RESULTS In this paper, we apply the recently-introduced theoretical framework of cherry picking to design a class of efficient heuristics that are guaranteed to produce a network containing each of the input trees, for practical-size datasets consisting of binary trees. Some of the heuristics in this framework are based on the design and training of a machine learning model that captures essential information on the structure of the input trees and guides the algorithms towards better solutions. We also propose simple and fast randomised heuristics that prove to be very effective when run multiple times. CONCLUSIONS Unlike the existing exact methods, our heuristics are applicable to datasets of practical size, and the experimental study we conducted on both simulated and real data shows that these solutions are qualitatively good, always within some small constant factor from the optimum. Moreover, our machine-learned heuristics are one of the first applications of machine learning to phylogenetics and show its promise.
Collapse
Affiliation(s)
| | - Leo van Iersel
- Delft Institute of Applied Mathematics, Delft, The Netherlands
| | - Esther Julien
- Delft Institute of Applied Mathematics, Delft, The Netherlands
| | - Leen Stougie
- CWI, Amsterdam, The Netherlands.
- Vrije Universiteit, Amsterdam, The Netherlands.
- INRIA-ERABLE, Lyon, France.
| |
Collapse
|
3
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Gross F, Kranke N, Meunier R. Pluralization through epistemic competition: scientific change in times of data-intensive biology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:1. [PMID: 30603778 DOI: 10.1007/s40656-018-0239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
We present two case studies from contemporary biology in which we observe conflicts between established and emerging approaches. The first case study discusses the relation between molecular biology and systems biology regarding the explanation of cellular processes, while the second deals with phylogenetic systematics and the challenge posed by recent network approaches to established ideas of evolutionary processes. We show that the emergence of new fields is in both cases driven by the development of high-throughput data generation technologies and the transfer of modeling techniques from other fields. New and emerging views are characterized by different philosophies of nature, i.e. by different ontological and methodological assumptions and epistemic values and virtues. This results in a kind of conflict we call "epistemic competition" that manifests in two ways: On the one hand, opponents engage in mutual critique and defense of their fundamental assumptions. On the other hand, they compete for the acceptance and integration of the knowledge they provide by a broader scientific community. Despite an initial rhetoric of replacement, the views as well as the respective audiences come to be seen as more clearly distinct during the course of the debate. Hence, we observe-contrary to many other accounts of scientific change-that conflict results in the formation of new niches of research, leading to co-existence and perceived complementarity of approaches. Our model thus contributes to the understanding of the pluralization of the scientific landscape.
Collapse
Affiliation(s)
- Fridolin Gross
- Institut für Philosophie, Universität Kassel, Henschelstr. 2, 34127, Kassel, Germany
| | - Nina Kranke
- Philosophisches Seminar, Westfälische Wilhelms-Universität Münster, Domplatz 23, 48143, Münster, Germany.
| | - Robert Meunier
- Institut für Philosophie, Universität Kassel, Henschelstr. 2, 34127, Kassel, Germany
| |
Collapse
|
5
|
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996-1004. [PMID: 30148503 DOI: 10.1038/nbt.4229] [Citation(s) in RCA: 1883] [Impact Index Per Article: 313.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.
Collapse
|
6
|
Pavan ME, Pavan EE, Glaeser SP, Etchebehere C, Kämpfer P, Pettinari MJ, López NI. Proposal for a new classification of a deep branching bacterial phylogenetic lineage: transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., Coprothermobacteria classis nov. and Coprothermobacterota phyl. nov. and emended description of the family Thermodesulfobiaceae. Int J Syst Evol Microbiol 2018; 68:1627-1632. [PMID: 29595416 DOI: 10.1099/ijsem.0.002720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genus Coprothermobacter (initially named Thermobacteroides) is currently placed within the phylum Firmicutes. Early 16S rRNA gene based phylogenetic studies pointed out the great differences between Coprothermobacter and other members of the Firmicutes, revealing that it constitutes a new deep branching lineage. Over the years, several studies based on 16S rRNA gene and whole genome sequences have indicated that Coprothermobacter is very distant phylogenetically to all other bacteria, supporting its placement in a distinct deeply rooted novel phylum. In view of this, we propose its allocation to the new family Coprothermobacteraceae within the novel order Coprothermobacterales, the new class Coprothermobacteria, and the new phylum Coprothermobacterota, and an emended description of the family Thermodesulfobiaceae.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - María Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Tian HF, Hu QM, Meng Y, Xiao HB. Molecular cloning, characterization and evolutionary analysis of leptin gene in Chinese giant salamander, Andrias davidianus. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractLeptin is an important hormone possessing diverse physiological roles in mammals and teleosts. However, it has been characterized only in a few amphibian species, and its evolutions are still under debate. Here, the full length of the leptin (Adlep) cDNA of Chinese giant salamander (Andrias davidianus), an early diverging amphibian species, is characterized and according to the results of the primary sequence analysis, tertiary structure reconstruction and phylogenetic analysis is confirmed to be an ortholog of mammalian leptin. An intron was identified between the coding exons of A. davidianus leptin, which indicated that the leptin is present in the salamander genome and contains a conserved gene structure in vertebrates. Adlep is widely distributed but expression levels vary among different tissues, with highest expression levels in the muscle. Additionally, the leptin receptor and other genes were mapped to three known leptin signaling pathways, suggesting that the leptin signaling pathways are present in A. davidianus. Phylogenetic topology of leptins are consistent with the generally accepted evolutionary relationships of vertebrates, and multiple leptin members found in teleosts seem to be obtained through a Cluopeocephala-specific gene duplication event. Our results will lay a foundation for further investigations into the physiological roles of leptin in A. davidianus.
Collapse
Affiliation(s)
- Hai-feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Qiao-mu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Han-bing Xiao
- No. 8, 1st Wudayuan Road, Donghu Hi-Tech Development Zone, Wuhan430223, China
| |
Collapse
|
8
|
Chan CX, Beiko RG, Ragan MA. Scaling Up the Phylogenetic Detection of Lateral Gene Transfer Events. Methods Mol Biol 2017; 1525:421-432. [PMID: 27896730 DOI: 10.1007/978-1-4939-6622-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lateral genetic transfer (LGT) is the process by which genetic material moves between organisms (and viruses) in the biosphere. Among the many approaches developed for the inference of LGT events from DNA sequence data, methods based on the comparison of phylogenetic trees remain the gold standard for many types of problem. Identifying LGT events from sequenced genomes typically involves a series of steps in which homologous sequences are identified and aligned, phylogenetic trees are inferred, and their topologies are compared to identify unexpected or conflicting relationships. These types of approach have been used to elucidate the nature and extent of LGT and its physiological and ecological consequences throughout the Tree of Life. Advances in DNA sequencing technology have led to enormous increases in the number of sequenced genomes, including ultra-deep sampling of specific taxonomic groups and single cell-based sequencing of unculturable "microbial dark matter." Environmental shotgun sequencing enables the study of LGT among organisms that share the same habitat.This abundance of genomic data offers new opportunities for scientific discovery, but poses two key problems. As ever more genomes are generated, the assembly and annotation of each individual genome receives less scrutiny; and with so many genomes available it is tempting to include them all in a single analysis, but thousands of genomes and millions of genes can overwhelm key algorithms in the analysis pipeline. Identifying LGT events of interest therefore depends on choosing the right dataset, and on algorithms that appropriately balance speed and accuracy given the size and composition of the chosen set of genomes.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Tian HF, Meng Y, Hu QM, Xiao HB. Molecular cloning, characterization and evolutionary analysis of vitellogenin in Chinese giant salamander Andrias davidianus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Cardona G, Pons JC, Rosselló F. A reconstruction problem for a class of phylogenetic networks with lateral gene transfers. Algorithms Mol Biol 2015; 10:28. [PMID: 26691555 PMCID: PMC4683721 DOI: 10.1186/s13015-015-0059-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/15/2015] [Indexed: 11/18/2022] Open
Abstract
Background Lateral, or Horizontal, Gene Transfers are a type of
asymmetric evolutionary events where genetic material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylogenetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution through lateral gene transfers. Results We introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. We then give an algorithm that, given a set of pairwise different phylogenetic trees \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_0,T_1,\ldots ,T_k$$\end{document}T0,T1,…,Tk on the same set of taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic tree is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_0$$\end{document}T0 and its secondary phylogenetic trees are \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_1,\ldots ,T_k$$\end{document}T1,…,Tk. Electronic supplementary material The online version of this article (doi:10.1186/s13015-015-0059-z) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Microbial Malaise: How Can We Classify the Microbiome? Trends Microbiol 2015; 23:671-679. [DOI: 10.1016/j.tim.2015.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/11/2015] [Accepted: 08/21/2015] [Indexed: 01/05/2023]
|
13
|
Abstract
Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome-sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in a nutrient-rich environment. It argues that the systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework.
Collapse
|
14
|
Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:273-281. [PMID: 25403554 DOI: 10.1111/1758-2229.12241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers and applied this to the analysis of the phylum Firmicutes. Results show that the phylogenetic trees constructed are in good agreement with each other; however, the protein-based trees are able to resolve the relationships between several branches where so far only ambiguous classifications are possible. Thus, the phylogeny deduced based on concatenated proteins provides significant basis for re-classifying members in this phylum. It indicates that the genera Coprothermobacter and Thermodesulfobium represent two new phyla; the families Paenibacillaceae and Alicyclobacillaceae should be elevated to order level; and the families Bacillaceae and Thermodesulfobiaceae should be separated to 2 and 3 families respectively. We also suggest that four novel families should be proposed in the orders Clostridiales and Bacillales, and 11 genera should be moved to other existing families different from the current classification status. Moreover, notably, RPs are a well-suited subset of CPs that could be applied to Firmicutes phylogenetic analysis instead of the 16S rRNA gene.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | | |
Collapse
|
15
|
Gagliano M, Braguglia C, Petruccioli M, Rossetti S. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 2015; 91:fiv018. [DOI: 10.1093/femsec/fiv018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
|
16
|
McKENNEY EA, ASHWELL M, LAMBERT JE, FELLNER V. Fecal microbial diversity and putative function in captive western lowland gorillas (Gorilla gorilla gorilla), common chimpanzees (Pan troglodytes), Hamadryas baboons (Papio hamadryas) and binturongs (Arctictis binturong). Integr Zool 2014; 9:557-69. [DOI: 10.1111/1749-4877.12112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Erin A. McKENNEY
- Department of Animal Sciences; North Carolina State University; Raleigh North Carolina USA
| | - Melissa ASHWELL
- Department of Animal Sciences; North Carolina State University; Raleigh North Carolina USA
| | - Joanna E. LAMBERT
- Department of Anthropology; The University of Texas at San Antonio; Texas USA
| | - Vivek FELLNER
- Department of Animal Sciences; North Carolina State University; Raleigh North Carolina USA
| |
Collapse
|
17
|
Whidden C, Zeh N, Beiko RG. Supertrees Based on the Subtree Prune-and-Regraft Distance. Syst Biol 2014; 63:566-81. [PMID: 24695589 PMCID: PMC4055872 DOI: 10.1093/sysbio/syu023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 03/18/2014] [Indexed: 11/14/2022] Open
Abstract
Supertree methods reconcile a set of phylogenetic trees into a single structure that is often interpreted as a branching history of species. A key challenge is combining conflicting evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena such as lateral gene transfer (LGT). Many supertree approaches use optimality criteria that do not reflect underlying processes, have known biases, and may be unduly influenced by LGT. We present the first method to construct supertrees by using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum agreement forest-based methods can reconcile trees with hundreds of taxa and>50 transfers in fractions of a second, which enables repeated calculations during the course of an iterative search. Our approach can accommodate trees in which uncertain relationships have been collapsed to multifurcating nodes. Using a series of benchmark datasets simulated under plausible rates of LGT, we show that SPR supertrees are more similar to correct species histories than supertrees based on parsimony or Robinson-Foulds distance criteria. We successfully constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct inference of highways of gene transfer between bacterial classes and genera. A Small number of these highways connect genera in different phyla and can highlight specific genes implicated in long-distance LGT. [Lateral gene transfer; matrix representation with parsimony; phylogenomics; prokaryotic phylogeny; Robinson-Foulds; subtree prune-and-regraft; supertrees.].
Collapse
Affiliation(s)
- Christopher Whidden
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Norbert Zeh
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
18
|
Zwickl DJ, Stein JC, Wing RA, Ware D, Sanderson MJ. Disentangling Methodological and Biological Sources of Gene Tree Discordance on Oryza (Poaceae) Chromosome 3. Syst Biol 2014; 63:645-59. [DOI: 10.1093/sysbio/syu027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Derrick J. Zwickl
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Joshua C. Stein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Rod A. Wing
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Doreen Ware
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Michael J. Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA, 2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, 3School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, and 4Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Balvočūtė M, Spillner A, Moulton V. FlatNJ: A Novel Network-Based Approach to Visualize Evolutionary and Biogeographical Relationships. Syst Biol 2014; 63:383-96. [DOI: 10.1093/sysbio/syu001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
21
|
O'Malley MA. When integration fails: Prokaryote phylogeny and the tree of life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:551-62. [PMID: 23137776 DOI: 10.1016/j.shpsc.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Much is being written these days about integration, its desirability and even its necessity when complex research problems are to be addressed. Seldom, however, do we hear much about the failure of such efforts. Because integration is an ongoing activity rather than a final achievement, and because today's literature about integration consists mostly of manifesto statements rather than precise descriptions, an examination of unsuccessful integration could be illuminating to understand better how it works. This paper will examine the case of prokaryote phylogeny and its apparent failure to achieve integration within broader tree-of-life accounts of evolutionary history (often called 'universal phylogeny'). Despite the fact that integrated databases exist of molecules pertinent to the phylogenetic reconstruction of all lineages of life, and even though the same methods can be used to construct phylogenies wherever the organisms fall on the tree of life, prokaryote phylogeny remains at best only partly integrated within tree-of-life efforts. I will examine why integration does not occur, compare it with integrative practices in animal and other eukaryote phylogeny, and reflect on whether there might be different expectations of what integration should achieve. Finally, I will draw some general conclusions about integration and its function as a 'meta-heuristic' in the normative commitments guiding scientific practice.
Collapse
Affiliation(s)
- Maureen A O'Malley
- Department of Philosophy, University of Sydney, Quadrangle A14, NSW 2006, Australia.
| |
Collapse
|
22
|
Rubin JE, Harms NJ, Fernando C, Soos C, Detmer SE, Harding JCS, Hill JE. Isolation and characterization of Brachyspira spp. including "Brachyspira hampsonii" from lesser snow geese (Chen caerulescens caerulescens) in the Canadian Arctic. MICROBIAL ECOLOGY 2013; 66:813-822. [PMID: 23933825 DOI: 10.1007/s00248-013-0273-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Brachyspira is associated with diarrhea and colitis in pigs, and control of these pathogens is complicated by their complex ecology. Identification of wildlife reservoirs of Brachyspira requires the discrimination of colonized animals and those simply contaminated through environmental exposure. Lesser snow geese (Chen caerulescens caerulescens) were sampled in the Canadian arctic during the summer of 2011, and cloacal swabs were cultured on selective media. Brachyspira isolates were obtained from 15/170 (8.8 %) samples, and 12/15 isolates were similar to isolates previously recovered from pigs, including "Brachyspira hampsonii", a recently characterized species associated with dysentery-like disease in pigs in North America. A pilot inoculation study with one strongly β-hemolytic B. hampsonii isolate resulted in fecal shedding of the isolate by inoculated pigs for up to 14 days post-inoculation, but no severe clinical disease. Results of this study indicate that lesser snow geese can be colonized by Brachyspira strains that can also colonize pigs. Millions of lesser snow geese (C. caerulescens caerulescens) travel through the major pork-producing areas of Canada and the USA during their annual migration, making them a potential factor in the continental distribution of these bacteria.
Collapse
Affiliation(s)
- Joseph E Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 2013; 8:e62510. [PMID: 23638103 PMCID: PMC3636077 DOI: 10.1371/journal.pone.0062510] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/26/2013] [Indexed: 11/29/2022] Open
Abstract
Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a "primary concordance" tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.
Collapse
Affiliation(s)
- Jenna Morgan Lang
- Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Aaron E. Darling
- Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Jonathan A. Eisen
- Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| |
Collapse
|
24
|
Tamames J, Durante-Rodríguez G. Taxonomy becoming a driving force in genome sequencing projects. Syst Appl Microbiol 2013; 36:215-7. [PMID: 23453737 DOI: 10.1016/j.syapm.2013.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
We studied the possible impact of genomic projects by comparing the number of published articles before and after the completion of the project. We found that for most species, there is no significant change in the number of citations. Also our study remarks the growing importance of taxonomy as main motivation for the sequencing of genomes.
Collapse
Affiliation(s)
- Javier Tamames
- Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain.
| | | |
Collapse
|
25
|
Eveleigh RJ, Meehan CJ, Archibald JM, Beiko RG. Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past. Genome Biol Evol 2013; 5:2478-97. [PMID: 24281050 PMCID: PMC3879981 DOI: 10.1093/gbe/evt195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages.
Collapse
Affiliation(s)
- Robert J.M. Eveleigh
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Conor J. Meehan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Ruffing U, Akulenko R, Bischoff M, Helms V, Herrmann M, von Müller L. Matched-cohort DNA microarray diversity analysis of methicillin sensitive and methicillin resistant Staphylococcus aureus isolates from hospital admission patients. PLoS One 2012; 7:e52487. [PMID: 23285062 PMCID: PMC3527544 DOI: 10.1371/journal.pone.0052487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/13/2012] [Indexed: 12/03/2022] Open
Abstract
As genotyping of S. aureus is important for epidemiologic research and for hygiene management, methods are required for standardized fast and easily applicable evaluation of closely related epidemic strains with high prevalence in hospitals. In this single centre matched control study we compared a new commercially available DNA microarray (IdentiBAC) with standard spa-typing for S. aureus genotyping. Included in the study was a subgroup of 46 MRSA and matched 46 MSSA nasal isolates of the Saarland University Medical Center collected during a state-wide admission prevalence screening. Microarray (MA) and also spa-typing could easily differentiate the genetically diverse MSSA group. However, due to the predominance of CC5/t003 in the MRSA group a sufficient subtyping required analysis of more complex genetic profiles as was shown here by the MA comprising a total number of 334 different hybridization probes. The genetic repertoire of the MRSA group was characterized by more virulence genes as compared to the MSSA group. The standard evaluation of MA results by the original software into CCs, agr-, SCCmec- and capsule-types was substituted in the present study by implementation of multivariate subtyping of closely related CC5 isolates using three different bioinformatic methods (splits graph, cluster dendrogram, and principal component analysis). Each method used was applicable for standardized and highly discriminative subtyping with high concordance. We propose that the identified S. aureus subtypes with characteristic virulence gene profiles are presumably associated also with virulence and pathogenicity in vivo; however, this remains to be analyzed in future studies. MA was superior to spa-typing for epidemiologic and presumably also provide functional respectively virulence associated characterization of S. aureus isolates. This is of specific importance for the hospital setting. In future, MA could become a new standard test for S. aureus typing in combination with multivariate bioinformatic analysis.
Collapse
Affiliation(s)
- Ulla Ruffing
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ruslan Akulenko
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, Homburg/Saar, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, Homburg/Saar, Germany
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
27
|
Smith SE, Showers-Corneli P, Dardenne CN, Harpending HH, Martin DP, Beiko RG. Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution. PLoS One 2012; 7:e50070. [PMID: 23189179 PMCID: PMC3506542 DOI: 10.1371/journal.pone.0050070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 10/19/2012] [Indexed: 02/01/2023] Open
Abstract
The genus Mycobacterium encompasses over one hundred named species of environmental and pathogenic organisms, including the causative agents of devastating human diseases such as tuberculosis and leprosy. The success of these human pathogens is due in part to their ability to rapidly adapt to their changing environment and host. Recombination is the fastest way for bacterial genomes to acquire genetic material, but conflicting results about the extent of recombination in the genus Mycobacterium have been reported. We examined a data set comprising 18 distinct strains from 13 named species for evidence of recombination. Genomic regions common to all strains (accounting for 10% to 22% of the full genomes of all examined species) were aligned and concatenated in the chromosomal order of one mycobacterial reference species. The concatenated sequence was screened for evidence of recombination using a variety of statistical methods, with each proposed event evaluated by comparing maximum-likelihood phylogenies of the recombinant section with the non-recombinant portion of the dataset. Incongruent phylogenies were identified by comparing the site-wise log-likelihoods of each tree using multiple tests. We also used a phylogenomic approach to identify genes that may have been acquired through horizontal transfer from non-mycobacterial sources. The most frequent associated lineages (and potential gene transfer partners) in the Mycobacterium lineage-restricted gene trees are other members of suborder Corynebacterinae, but more-distant partners were identified as well. In two examined cases of potentially frequent and habitat-directed transfer (M. abscessus to Segniliparus and M. smegmatis to Streptomyces), observed sequence distances were small and consistent with a hypothesis of transfer, while in a third case (M. vanbaalenii to Streptomyces) distances were larger. The analyses described here indicate that whereas evidence of recombination in core regions within the genus is relatively sparse, the acquisition of genes from non-mycobacterial lineages is a significant feature of mycobacterial evolution.
Collapse
Affiliation(s)
- Silvia E. Smith
- School of Medicine, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | | | - Caitlin N. Dardenne
- School of Medicine, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Henry H. Harpending
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Kim I, Jung JY, Deluca TF, Nelson TH, Wall DP. Cloud computing for comparative genomics with windows azure platform. Evol Bioinform Online 2012; 8:527-34. [PMID: 23032609 PMCID: PMC3433929 DOI: 10.4137/ebo.s9946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.
Collapse
Affiliation(s)
- Insik Kim
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA. ; School of Electrical and Computer Engineering, Ulsan National Institute of Technology, Ulsan, Korea
| | | | | | | | | |
Collapse
|
29
|
Talevich E, Invergo BM, Cock PJA, Chapman BA. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics 2012; 13:209. [PMID: 22909249 PMCID: PMC3468381 DOI: 10.1186/1471-2105-13-209] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/08/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ongoing innovation in phylogenetics and evolutionary biology has been accompanied by a proliferation of software tools, data formats, analytical techniques and web servers. This brings with it the challenge of integrating phylogenetic and other related biological data found in a wide variety of formats, and underlines the need for reusable software that can read, manipulate and transform this information into the various forms required to build computational pipelines. RESULTS We built a Python software library for working with phylogenetic data that is tightly integrated with Biopython, a broad-ranging toolkit for computational biology. Our library, Bio.Phylo, is highly interoperable with existing libraries, tools and standards, and is capable of parsing common file formats for phylogenetic trees, performing basic transformations and manipulations, attaching rich annotations, and visualizing trees. We unified the modules for working with the standard file formats Newick, NEXUS and phyloXML behind a consistent and simple API, providing a common set of functionality independent of the data source. CONCLUSIONS Bio.Phylo meets a growing need in bioinformatics for working with heterogeneous types of phylogenetic data. By supporting interoperability with multiple file formats and leveraging existing Biopython features, this library simplifies the construction of phylogenetic workflows. We also provide examples of the benefits of building a community around a shared open-source project. Bio.Phylo is included with Biopython, available through the Biopython website, http://biopython.org.
Collapse
Affiliation(s)
- Eric Talevich
- Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| | - Brandon M Invergo
- Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Peter JA Cock
- James Hutton Institute, InvergowrieDundee DD2 5DA, UK
| | - Brad A Chapman
- Harvard School of Public Health Bioinformatics Core, 655 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
30
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A recent study suggests that lateral gene transfer has been particularly intense among human-associated microbes. What can this tell us about our relationship with our internal microbial world?
Collapse
|
32
|
Bhandari V, Naushad HS, Gupta RS. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2012; 2:98. [PMID: 22919687 PMCID: PMC3417386 DOI: 10.3389/fcimb.2012.00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/27/2012] [Indexed: 11/20/2022] Open
Abstract
The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
33
|
Skirton H, Jackson L, Goldsmith L, O'Connor A. Genomic medicine: what are the challenges for the National Health Service? Per Med 2012; 9:539-545. [PMID: 29768768 DOI: 10.2217/pme.12.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
'Personalized medicine' is inextricably linked with current advances in genomics. Although initial claims about the power of genomic tests have been modified, they have the potential to inform a personalized approach to healthcare. Within the health service, genomic testing is being applied in specific situations to inform therapy; however, more robust studies are needed to identify those tests that can make significant improvements to management and prevention of disease. Despite efforts to educate health professionals, genetic literacy remains unsatisfactory and more efforts are needed to embed genetics in pre- and post-registration professional education, and therefore, maximize benefit for patients. Primary care and public health professionals may be contexts in which genomics can be utilized for both personalized healthcare and promotion of community health.
Collapse
Affiliation(s)
- Heather Skirton
- Faculty of Health, Education & Society, Plymouth University, Wellington Road, Taunton, TA1 5YD, UK.
| | - Leigh Jackson
- Faculty of Health, Education & Society, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Lesley Goldsmith
- Faculty of Health, Education & Society, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Anita O'Connor
- Faculty of Health, Education & Society, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
34
|
Williams D, Fournier GP, Lapierre P, Swithers KS, Green AG, Andam CP, Gogarten JP. A rooted net of life. Biol Direct 2011; 6:45. [PMID: 21936906 PMCID: PMC3189188 DOI: 10.1186/1745-6150-6-45] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/21/2011] [Indexed: 01/29/2023] Open
Abstract
Abstract Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages. Reviewers W. Ford Doolittle, Eric Bapteste and Robert Beiko.
Collapse
Affiliation(s)
- David Williams
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | | | | | | | | | | | |
Collapse
|