1
|
Mapping Archaeal Diversity in Soda Lakes by Coupling 16S rRNA PCR-DGGE Analysis with Remote Sensing and GIS Technology. FERMENTATION 2022. [DOI: 10.3390/fermentation8080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The haloarchaeal diversity of four hypersaline alkaline lakes from the Wadi El-Natrun depression (Northern Egypt) was investigated using culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene phylotypes, which was combined with remote sensing and geographic information system (GIS) data to highlight the distribution pattern of the microbial diversity in water and sediment samples. The majority of archaeal sequences identified in all four lakes belonged to the phyla Euryarchaeota and Crenarchaeota. Sediment samples from Beida Lake and water samples from El-Hamra Lake showed the highest levels of archaeal diversity. Sequence similarities ≥ 95% were found between six of the acquired clones and uncultured Halorhabdus, Euryarchaeota, and archaeon clones. In addition, two clones shared a high level of sequence similarity (97%) with unclassified archaea, while other nine clones exhibited 96% to 99% sequence similarity with uncultured archaeon clones, and only one clone showed 97% identity with an uncultured Crenarchaeota. Likewise, 7 DGGE bands presented a sequence similarity of 90 to 98% to Halogranum sp., Halalkalicoccus tibetensis, Halalkalicoccus jeotgali, uncultured Halorubrum, Halobacteriaceae sp., or uncultured haloarchaeon. In conclusion, while the variety of alkaliphilic haloarchaea in the examined soda lakes was restricted, the possibility of uncovering novel species for biotechnological applications from these extreme habitats remains promising.
Collapse
|
2
|
Najjari A, Stathopoulou P, Elmnasri K, Hasnaoui F, Zidi I, Sghaier H, Ouzari HI, Cherif A, Tsiamis G. Assessment of 16S rRNA Gene-Based Phylogenetic Diversity of Archaeal Communities in Halite-Crystal Salts Processed from Natural Saharan Saline Systems of Southern Tunisia. BIOLOGY 2021; 10:biology10050397. [PMID: 34064384 PMCID: PMC8147861 DOI: 10.3390/biology10050397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
A thorough assessment of the phylogenetic diversity and community structure of halophilic archaea from three halite-crystal salts, processed from two separated saline systems of Southern Tunisia has been performed using culture dependent and independent methods targeting different regions of 16S rRNA gene sequences including DGGE, 16S rRNA clone libraries and Illumina Miseq sequencing. Two samples, CDR (red halite-crystal salts) and CDW (white halite-crystal salts), were collected from Chott-Eljerid and one sample CDZ (white halite-crystal salts) from Chott Douz. Fourteen isolates were identified as Halorubrum, Haloferax, Haloarcula, and Halogeometricum genera members. Culture-independent approach revealed a high diversity of archaeal members present in all samples, represented by the Euryarchaeal phylum and the dominance of the Halobacteria class. Nanohaloarchaea were also identified only in white halite samples based on metagenomic analysis. In fact, a total of 61 genera were identified with members of the Halorhabdus, Halonotius, Halorubrum, Haloarcula, and unclassified. Halobacteriaceae were shared among all samples. Unexpected diversity profiles between samples was observed where the red halite crust sample was considered as the most diverse one. The highest diversity was observed with Miseq approach, nevertheless, some genera were detected only with 16S rRNA clone libraries and cultured approaches.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia; (F.H.); (I.Z.); (H.I.O.)
- Correspondence:
| | - Panagiota Stathopoulou
- Department of Environmental Engineering, Laboratory of Systems Microbiology and Applied Genomics, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece; (P.S.); (G.T.)
| | - Khaled Elmnasri
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia; (K.E.); (H.S.); (A.C.)
| | - Faten Hasnaoui
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia; (F.H.); (I.Z.); (H.I.O.)
| | - Ines Zidi
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia; (F.H.); (I.Z.); (H.I.O.)
| | - Haitham Sghaier
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia; (K.E.); (H.S.); (A.C.)
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), 2020 Sidi Thabet, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092 Tunis, Tunisia; (F.H.); (I.Z.); (H.I.O.)
| | - Ameur Cherif
- Higher Institute for Biotechnology, University Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia; (K.E.); (H.S.); (A.C.)
| | - George Tsiamis
- Department of Environmental Engineering, Laboratory of Systems Microbiology and Applied Genomics, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece; (P.S.); (G.T.)
| |
Collapse
|
3
|
Abstract
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, Kurokawa K, Hongoh Y. Single-Cell Genomics of Novel Actinobacteria With the Wood-Ljungdahl Pathway Discovered in a Serpentinizing System. Front Microbiol 2020; 11:1031. [PMID: 32655506 PMCID: PMC7325909 DOI: 10.3389/fmicb.2020.01031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.5-11), located in Nagano (Japan), which are impacted by the serpentinization process. Analysis of the 16S rRNA gene amplicon sequences revealed that the bacterial community comprises Nitrospirae (47%), "Parcubacteria" (19%), Deinococcus-Thermus (16%), and Actinobacteria (9%), among others. Notably, only 57 amplicon sequence variants (ASV) were detected, and fifteen of these accounted for 90% of the amplicons. Among the abundant ASVs, an early-branching, uncultivated actinobacterial clade identified as RBG-16-55-12 in the SILVA database was detected. Ten single-cell genomes (average pairwise nucleotide identity: 0.98-1.00; estimated completeness: 33-93%; estimated genome size: ∼2.3 Mb) that affiliated with this clade were obtained. Taxonomic classification using single copy genes indicates that the genomes belong to the actinobacterial class-level clade UBA1414 in the Genome Taxonomy Database. Based on metabolic pathway predictions, these actinobacteria are anaerobes, capable of glycolysis, dissimilatory nitrate reduction and CO2 fixation via the Wood-Ljungdahl (WL) pathway. Several other genomes within UBA1414 and two related class-level clades also encode the WL pathway, which has not yet been reported for the Actinobacteria phylum. For the Hakuba actinobacterium, the energy metabolism related to the WL pathway is likely supported by a combination of the Rnf complex, group 3b and 3d [NiFe]-hydrogenases, [FeFe]-hydrogenases, and V-type (H+/Na+ pump) ATPase. The genomes also harbor a form IV ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, also known as a RubisCO-like protein, and contain signatures of interactions with viruses, including clustered regularly interspaced short palindromic repeat (CRISPR) regions and several phage integrases. This is the first report and detailed genome analysis of a bacterium within the Actinobacteria phylum capable of utilizing the WL pathway. The Hakuba actinobacterium is a member of the clade UBA1414/RBG-16-55-12, formerly within the group "OPB41." We propose to name this bacterium 'Candidatus Hakubanella thermoalkaliphilus.'
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mikihiko Kawai
- School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yuichi Hongoh
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Oren A. Life in Hypersaline Environments. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Oren A, Hallsworth JE. Microbial weeds in hypersaline habitats: the enigma of the weed-likeHaloferax mediterranei. FEMS Microbiol Lett 2014; 359:134-42. [DOI: 10.1111/1574-6968.12571] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Aharon Oren
- Department of Plant & Environmental Sciences; The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem; Jerusalem Israel
| | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast UK
| |
Collapse
|
7
|
Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment? CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Oren A. The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life (Basel) 2012; 3:1-20. [PMID: 25371329 PMCID: PMC4187190 DOI: 10.3390/life3010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023] Open
Abstract
A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
9
|
|
10
|
Lobasso S, Lopalco P, Angelini R, Pollice A, Laera G, Milano F, Agostiano A, Corcelli A. Isolation of Squarebop I bacteriorhodopsin from biomass of coastal salterns. Protein Expr Purif 2012; 84:73-9. [PMID: 22580037 DOI: 10.1016/j.pep.2012.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Squarebop I bacteriorhodopsin is a light-activated proton pump present in the membranes of the archeon Haloquadratum walsbyi, a square-shaped organism representing 50-60% of microbial population in the crystallizer ponds of the coastal salterns. Here we describe: (1) the operating mode of a bioreactor designed to concentrate the saltern biomass through a microfiltration process based on polyethersulfone hollow fibers; (2) the isolation of Squarebop I bacteriorhodopsin from solubilized biomass by means of a single chromatographic step; (3) tightly bound lipids to the isolated and purified protein as revealed by MALDI-TOF/MS analysis; (4) the photoactivity of Squarebop I bacteriorhodopsin isolated from environmental samples by flash spectroscopy. Yield of the isolation process is 150 μg of Squarebop I bacteriorhodopsin from 1l of 25-fold concentrated biomass. The possibility of using the concentrated biomass of salterns, as renewable resource for the isolation of functional bacteriorhodopsin and possibly other valuable bioproducts, is briefly discussed.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lobasso S, Lopalco P, Vitale R, Saponetti MS, Capitanio G, Mangini V, Milano F, Trotta M, Corcelli A. The light-activated proton pump Bop I of the archaeon Haloquadratum walsbyi. Photochem Photobiol 2012; 88:690-700. [PMID: 22248212 DOI: 10.1111/j.1751-1097.2012.01089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have isolated and characterized the light-driven proton pump Bop I from the ultrathin square archaeon Haloquadratum walsbyi, the most abundant component of the dense microbial community inhabiting hypersaline environments. The disruption of cells by hypo-osmotic shock yielded Bop I retinal protein highly enriched membranes, which contain one main 27 kDa protein band together with a high content of the carotenoid bacterioruberin. Light-induced pH changes were observed in suspensions of Bop I retinal protein-enriched membranes under sustained illumination. Solubilization of H. walsbyi cells with Triton X-100, followed by phenyl-Sepharose chromatography, resulted in isolation of two purified Bop I retinal protein bands; mass spectrometry analysis revealed that the Bop I was present as only protein in both the bands. The study of light/dark adaptations, M-decay kinetics, responses to titration with alkali in the dark and endogenous lipid compositions of the two Bop I retinal protein bands showed functional differences that could be attributed to different protein aggregation states. Proton-pumping activity of Bop I during the photocycle was observed in liposomes constituted of archaeal lipids. Similarities and differences of Bop I with other archaeal proton-pumping retinal proteins will be discussed.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 2011; 15:347-58. [PMID: 21424516 PMCID: PMC3084946 DOI: 10.1007/s00792-011-0364-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/01/2011] [Indexed: 11/15/2022]
Abstract
Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples.
Collapse
|
13
|
Oh D, Porter K, Russ B, Burns D, Dyall-Smith M. Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 2009; 14:161-9. [PMID: 20091074 PMCID: PMC2832888 DOI: 10.1007/s00792-009-0295-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/01/2009] [Indexed: 11/03/2022]
Abstract
Haloquadratum walsbyi is frequently a dominant member of the microbial communities in hypersaline waters. 16S rRNA gene sequences indicate that divergence within this species is very low but relatively few sites have been examined, particularly in the southern hemisphere. The diversity of Haloquadratum was examined in three coastal, but geographically distant saltern crystallizer ponds in Australia, using both culture-independent and culture-dependent methods. Two 97%-OTU, comprising Haloquadratum- and Halorubrum-related sequences, were shared by all three sites, with the former OTU representing about 40% of the sequences recovered at each site. Sequences 99.5% identical to that of Hqr. walsbyi C23(T) were present at all three sites and, overall, 98% of the Haloquadratum-related sequences displayed <or=2% divergence from that of the type strain. While haloarchaeal diversity at each site was relatively low (9-16 OTUs), seven phylogroups (clones and/or isolates) and 4 different clones showed <or=90% sequence identity to classified taxa, and appear to represent novel genera. Six of these branched together in phylogenetic tree reconstructions, forming a clade (MSP8-clade) whose members were only distantly related to classified taxa. Such sequences have only rarely been previously detected but were found at all three Australian crystallizers.
Collapse
Affiliation(s)
- Dickson Oh
- 5/9 Waterman Terrace, Mitchell Park, SA, 5043, Australia
| | | | | | | | | |
Collapse
|
14
|
Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:177-83. [PMID: 19054744 DOI: 10.1155/2008/870191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lipid composition of the extremely halophilic archaeon Haloquadratum walsbyi was investigated by thin-layer chromatography and electrospray ionization-mass spectrometry. The analysis of neutral lipids showed the presence of vitamin MK-8, squalene, carotene, bacterioruberin and several retinal isomers. The major polar lipids were phosphatidylglycerophosphate methyl ester, phosphatidylglycerosulfate, phosphatidylglycerol and sulfated diglycosyl diether lipid. Among cardiolipins, the tetra-phytanyl or dimeric phospholipids, only traces of bisphosphatidylglycerol were detected. When the cells were exposed to hypotonic medium, no changes in the membrane lipid composition occurred. Distinguishing it from other extreme halophiles of the Halobacteriaceae family, the osmotic stress did not induce the neo-synthesis of cardiolipins in H. walsbyi. The difference may depend on the three-laminar structure of the cell wall, which differs significantly from that of other Haloarchaea.
Collapse
|
15
|
DasSarma S. Saline Systems highlights for 2006. SALINE SYSTEMS 2007; 3:1. [PMID: 17244355 PMCID: PMC1784102 DOI: 10.1186/1746-1448-3-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/10/2022]
Abstract
Saline Systems is a journal devoted to both basic and applied studies of saline and hypersaline environments and their biodiversity. Here, I review the reports and commentaries published in the journal in 2006, including some exploring the geochemistry of saline estuaries, lakes, and ponds, others on the ecology and molecular biology of the indigenous halophilic organisms, and still others addressing the environmental challenges facing saline environments. Several studies are relevant to applications in biotechnology and aquaculture.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, Baltimore, Maryland 21202, USA
| |
Collapse
|
16
|
Elevi Bardavid R, Khristo P, Oren A. Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 2006; 12:5-14. [PMID: 17186316 DOI: 10.1007/s00792-006-0053-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.
Collapse
Affiliation(s)
- Rahel Elevi Bardavid
- The Institute of Life Sciences, and The Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | |
Collapse
|