1
|
Iosselevitch I, Tabibian-Keissar H, Barshack I, Mehr R. Gastric DLBCL clonal evolution as function of patient age. Front Immunol 2022; 13:957170. [PMID: 36105806 PMCID: PMC9464916 DOI: 10.3389/fimmu.2022.957170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 01/10/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of NHL, accounting for about 40% of NHL cases, and is one of the most aggressive lymphomas. DLBCL is widespread in individuals aged more than 50 years old, with a maximum incidence in the seventh decade, but it may also occur in younger patients. DLBCL may occur in any immune system tissue, including those around the gastrointestinal tract, and even in the stomach, though gastric DLBCL has yet to be sufficiently investigated. This study aimed to understand changes in gastric Diffuse Large B cell lymphoma (gastric DLBCL) development with age. Immunoglobulin (Ig) heavy chain variable region genes were amplified from sections of nine preserved biopsies, from patients whose age varied between 25 and 89 years, sequenced and analyzed. We show first that identification of the malignant clone based on the biopsies is much less certain than was previously assumed; and second that, contrary to expectations, the repertoire of gastric B cell clones is more diverse among the elderly DLBCL patients than among the young.
Collapse
Affiliation(s)
- Irina Iosselevitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Iris Barshack
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Department of Pathology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- *Correspondence: Ramit Mehr,
| |
Collapse
|
2
|
Henrich M, Scheffold S, Hecht W, Reinacher M. High resolution melting analysis (HRM) for the assessment of clonality in feline B-cell lymphomas. Vet Immunol Immunopathol 2018; 200:59-68. [DOI: 10.1016/j.vetimm.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 04/21/2018] [Indexed: 01/10/2023]
|
3
|
Schöpper I, Ohmura S, Rütgen B, Tsujimoto H, Weber K, Hirschberger J. Melting curve analysis in canine lymphoma by calculating maximum fluorescence decrease. Vet Comp Oncol 2016; 15:563-575. [DOI: 10.1111/vco.12200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/18/2015] [Accepted: 10/30/2015] [Indexed: 01/25/2023]
Affiliation(s)
- I. Schöpper
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine; Ludwig-Maximilians-University; Munich Germany
| | - S. Ohmura
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine; Ludwig-Maximilians-University; Munich Germany
| | - B. Rütgen
- Department of Pathobiology, Clinical Pathology; University of Veterinary Medicine; Vienna Austria
| | - H. Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural Life Sciences; The University of Tokyo; Tokyo Japan
| | - K. Weber
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine; Ludwig-Maximilians-University; Munich Germany
| | - J. Hirschberger
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
4
|
Xu D, Yang Z, Zhang D, Wu W, Guo Y, Chen Q, Xu D, Cui W. Rapid detection of immunoglobulin heavy chain gene rearrangement by PCR and melting curve analysis using combined FR2 and FR3 primers. Diagn Pathol 2015; 10:140. [PMID: 26255311 PMCID: PMC4529721 DOI: 10.1186/s13000-015-0370-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Background Immunoglobulin heavy chain (IgH) gene rearrangement test is a standard tool in diagnosing B-cell lymphoma. The BIOMED-2 multiplex PCR protocol has become the most commonly used laboratory method for detecting clonal IgH gene rearrangement. However, post-PCR procedure requires manual transfer of PCR product for analysis and is time-consuming. A novel strategy using LightCycler to continuously monitor fluorescence during melting curve analysis (MCA) can overcome these shortcomings. The previous studies published on this method were all restricted to FR3 primers of BIOMED-2. Methods Real-time PCR and subsequent MCA were performed on 71 clinical DNA samples from formalin-fixed, paraffin-embedded tissues, including 40 with B-cell non-Hodgkin lymphomas and 31 with reactive lymphoid hyperplasia. We optimized the current method using FR3 primers and applied FR2 primers for the first time into MCA to detect IgH gene rearrangement. Polyacrylamide gel electrophoresis and capillary gel electrophoresis were also performed on all lymphoma samples with the identical FR2 primers. Results MCA of combined FR2 and FR3 primer sets yielded the sensitivity and the specificity equal to 70 % (28/40) and 100 % (31/31), respectively. Addition of FR2 primers increased the sensitivity by 12.5 % (5/40) comparing to FR3 primers alone. MCA was slightly more sensitive than polyacrylamide gel electrophoresis and comparable to capillary gel electrophoresis to detect clonal IgH gene rearrangement. Conclusions Combined PCR and DNA melting curve analysis in a closed system can reduce cross-contamination risk. This method can test 96 samples simultaneously within 90 min and therefore, it is high-throughput and faster. PCR-MCA in the LightCycler system has potential for evaluating monoclonal IgH gene rearrangement in a clinical environment.
Collapse
Affiliation(s)
- Danfei Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Donghong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ye Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Qian Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dongsheng Xu
- Hematopathology Program, CBL Path, Inc., Rye Brook, NY, 10753, USA.
| | - Wei Cui
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Wen J, Tao W, Kuiatse I, Lin P, Feng Y, Jones RJ, Orlowski RZ, Zu Y. Dynamic balance of multiple myeloma clonogenic side population cell percentages controlled by environmental conditions. Int J Cancer 2014; 136:991-1002. [PMID: 25042852 DOI: 10.1002/ijc.29078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/02/2014] [Indexed: 02/02/2023]
Abstract
Cancer stem cells are key drivers of tumor progression and disease recurrence in multiple myeloma (MM). However, little is known about the regulation of MM stem cells. Here, we show that a population of MM cells, known as the side population (SP), exhibits stem-like properties. Cells that constitute the SP in primary MM isolates are negative or seldom expressed for CD138 and CD20 markers. In addition, the SP population contains stem cells that belong to the same lineage as the mature neoplastic plasma cells. Importantly, our data indicate that the SP and nonside population (NSP) percentages in heterogeneous MM cells are balanced, and that this balance can be achieved through a prolonged in vitro culture. Furthermore, we show that SP cells, with confirmed molecular characteristics of MM stem cells, can be regenerated from purified NSP cell populations. We also show that the percentage of SP cells can be enhanced by the hypoxic stress, which is frequently observed within MM tumors. Finally, hypoxic stress enhanced the expression of transforming growth factor β1 (TGF-β1) and blocking the TGF-β1 signaling pathway inhibited the NSP dedifferentiation. Taken together, these findings indicate that the balance between MM SP and NSP is regulated by environmental factors and TGF-β1 pathway is involved in hypoxia-induced increase of SP population. Understanding the mechanisms that facilitate SP maintenance will accelerate the design of novel therapeutics aimed at controlling these cells in MM.
Collapse
Affiliation(s)
- Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wen J, Li H, Tao W, Savoldo B, Foglesong JA, King LC, Zu Y, Chang CC. High throughput quantitative reverse transcription PCR assays revealing over-expression of cancer testis antigen genes in multiple myeloma stem cell-like side population cells. Br J Haematol 2014; 166:711-9. [PMID: 24889268 DOI: 10.1111/bjh.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/09/2014] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) stem cells, proposed to be responsible for the tumourigenesis, drug resistance and recurrence of this disease, are enriched in the cancer stem cell-like side population (SP). Cancer testis antigens (CTA) are attractive targets for immunotherapy because they are widely expressed in cancers but only in limited types of normal tissues. We designed a high throughput assay, which allowed simultaneous relative quantifying expression of 90 CTA genes associated with MM. In the three MM cell lines tested, six CTA genes were over-expressed in two and LUZP4 and ODF1 were universally up-regulated in all three cell lines. Subsequent study of primary bone marrow (BM) from eight MM patients and four healthy donors revealed that 19 CTA genes were up-regulated in SP of MM compared with mature plasma cells. In contrast, only two CTA genes showed a moderate increase in SP cells of healthy BM. Furthermore, knockdown using small interfering RNA (siRNA) revealed that LUZP4 expression is required for colony-forming ability and drug resistance in MM cells. Our findings indicate that multiple CTA have unique expression profiles in MM SP, suggesting that CTA may serve as targets for immunotherapy that it specific for MM stem cells and which may lead to the long-term cure of MM.
Collapse
Affiliation(s)
- Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Detection of clonal antigen receptor gene rearrangement in dogs with lymphoma by real-time polymerase chain reaction and melting curve analysis. BMC Vet Res 2014; 10:1. [PMID: 24383544 PMCID: PMC3904468 DOI: 10.1186/1746-6148-10-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Molecular techniques that detect canine lymphoma cells by their clonal antigen receptor gene rearrangement play an increasing role for diagnosis as well as for monitoring minimal residual disease during and after cytostatic therapy. However, the methods currently available are time-consuming and/or cost-intensive thus impeding the use in clinical routine. The aim of the present study was to develop and evaluate a real-time polymerase chain reaction (PCR) with subsequent melting curve analysis (MCA) for the detection of clonally rearranged antigen receptor genes in dogs with B and T cell lymphoma on non formalin-fixed and paraffin-embedded lymph node samples. Results In lymph node aspirates from 30 dogs with multicentric B cell lymphoma, real-time PCR with MCA detected clonal rearrangement in 100% and conventional PCR with polyacrylamide gel electrophoresis (PAGE) in 93% of samples. Both methods correctly identified clonality in 80% of lymph node aspirates of 10 dogs with T cell lymphoma. None of the two PCR systems detected clonal rearrangement in samples from 9 dogs with lymph node hyperplasia. Using a dilutional series with regular lymphoid desoxyribonucleic acid (DNA), detection limits of lymphoma DNA were as low as 0.8% and 6.25% for B and T cell clonal rearrangement with real-time PCR and MCA and at 3.13% and 12.5% with the conventional system. Median absolute detection limits of lymphoma DNA were shown to be at 0.1 ng and 1 ng for the B and T cell immunophenotype with the real-time PCR system and at 10 ng each with conventional PCR and PAGE. Conclusions Real-time PCR with MCA is a convenient and reliable method with a good analytical sensitivity. Thus, the method may assist the detection of clonal antigen receptor gene rearrangement in canine lymphoma patients in a clinical setting also in the presence of small amounts of neoplastic cells.
Collapse
|
8
|
Thafeni MA, Sayed Y, Motadi LR. Euphorbia mauritanica and Kedrostis hirtella extracts can induce anti-proliferative activities in lung cancer cells. Mol Biol Rep 2012; 39:10785-94. [PMID: 23086267 DOI: 10.1007/s11033-012-1972-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/01/2012] [Indexed: 11/28/2022]
Abstract
Cancer is a public health problem in the world accounting for most of the deaths. Currently, common treatment of cancer such as chemotherapy works by killing fast-growing cancer cells. Unfortunately, chemotherapy cannot tell the difference between cancer cells and fast-growing healthy cells, including red and white blood cells. As a result, one of the most serious potential side effects of some types of chemotherapy is a low white blood cell count that makes it unreliable (Parkin et al. [34]; Pauk et al. [3]). Even though intense research has been going on in recent years, successful therapeutic targets against this disease have been elusive. In this study, we evaluate the anti-proliferative activity of Euphorbia mauritanica and Kedrostis hirtella in lung cancer. In our assessment it was observed that E. mauritanica and K. hirtella were able to induce cell death at 5 μg/ml in A549 cells over 22 h and at 10 μg/ml over 24 h in the Lqr1 cell line. Molecular analysis of DNA fragmentation and Annexin V were used to examine the type of cell death induced by E. mauritanica and K. hirtella extracts. These results showed an increase in necrotic and apoptotic characteristics with both nuclear DNA fragmentation and smear. Therefore, these results suggest that E. mauritanica and K. hirtella may play a role in inducing cell death in lung cancer cells. However, further studies need to be conducted to ascertain these results.
Collapse
Affiliation(s)
- Makhosazana A Thafeni
- Apoptosis and Cancer Genetic Laboratory, School of Molecular Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
9
|
Bono C, Nuzzo D, Albeggiani G, Zizzo C, Francofonte D, Iemolo F, Sanzaro E, Duro G. Genetic screening of Fabry patients with EcoTILLING and HRM technology. BMC Res Notes 2011; 4:323. [PMID: 21896204 PMCID: PMC3180462 DOI: 10.1186/1756-0500-4-323] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/06/2011] [Indexed: 01/25/2023] Open
Abstract
Background Anderson-Fabry disease (FD) is caused by a deficit of the α-galactosidase A enzyme which leads to the accumulation of complex sphingolipids, especially globotriaosylceramide (Gb3), in all the cells of the body, causing the onset of a multi-systemic disease with poor prognosis in adulthood. In this article, we describe two alternative methods for screening the GLA gene which codes for the α-galactosidase A enzyme in subjects with probable FD in order to test analysis strategies which include or rely on initial pre-screening. Findings We analyzed 740 samples using EcoTILLING, comparing two mismatch-specificendonucleases, CEL I and ENDO-1, while conducting a parallel screening of the same samples using HRM (High Resolution Melting). Afterwards, all samples were subjected to direct sequencing. Overall, we identified 12 different genetic variations: -10C>T, -12G>A, -30G>A, IVS2-76_80del5, D165H, C172Y, IVS4+16A>G, IVS4 +68 A>G, c.718_719delAA, D313Y, IVS6-22C>T, G395A. This was consistent with the high genetic heterogeneity found in FD patients and carriers. All of the mutations were detected by HRM, whereas 17% of the mutations were not found by EcoTILLING. The results obtained by EcoTILLING comparing the CEL I and ENDO-1 endonucleases were perfectly overlapping. Conclusion On the basis of its simplicity, flexibility, repeatability, and sensitivity, we believe thatHRM analysis of the GLA gene is a reliable presequencing screening tool. This method can be applied to any genomic feature to identify known and unknown genetic alterations, and it is ideal for conducting screening and population studies.
Collapse
Affiliation(s)
- Caterina Bono
- National Research Council-Institute of Biomedicine and Molecular Immunology (CNR-IBIM) - Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Multiplex real-time PCR and high-resolution melting analysis for detection of white spot syndrome virus, yellow-head virus, and Penaeus monodon densovirus in penaeid shrimp. J Virol Methods 2011; 178:16-21. [PMID: 21906627 DOI: 10.1016/j.jviromet.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/11/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
A multiplex real-time PCR and high-resolution melting (HRM) analysis was developed to detect simultaneously three of the major viruses of penaeid shrimp including white spot syndrome virus (WSSV), yellow-head virus (YHV), and Penaeus monodon densovirus (PmDNV). Plasmids containing DNA/cDNA fragments of WSSV and YHV, and genomic DNAs of PmDNV and normal shrimp were used to test sensitivity of the procedure. Without the need of any probe, the products were identified by HRM analysis after real-time PCR amplification using three sets of viral specific primers. The results showed DNA melting curves that were specific for individual virus. No positive result was detected with nucleic acids from shrimp, Penaeus monodon nucleopolyhedrovirus (PemoNPV), Penaeus stylirostris densovirus (PstDNV), or Taura syndrome virus (TSV). The detection limit for PmDNV, YHV and WSSV DNAs were 40fg, 50fg, and 500fg, respectively, which was 10 times more sensitive than multiplex real-time PCR analyzed by agarose gel electrophoresis. In viral nucleic acid mixtures, HRM analysis clearly identified each virus in dual and triple infection. To test the capability to use this method in field, forty-one of field samples were examined by HRM analysis in comparison with agarose gel electrophoresis. For HRM analysis, 11 (26.83%), 9 (21.95%), and 4 (9.76%) were infected with WSSV, PmDNV, and YHV, respectively. Agarose gel electrophoresis detected lesser number of PmDNV infection which may due to the limit of sensitivity. No multiple infection was found in these samples. This method provides a rapid, sensitive, specific, and simultaneous detection of three major viruses making it as a useful tool for diagnosis and epidemiological studies of these viruses in shrimp and carriers.
Collapse
|