1
|
Zhang L, Yan X, Wang Y, Wang Q, Yan H, Yan Y. Identification and validation of a novel robust glioblastoma prognosis model based on bioinformatics. Heliyon 2024; 10:e37374. [PMID: 39309926 PMCID: PMC11414505 DOI: 10.1016/j.heliyon.2024.e37374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Glioblastoma (GBM) is a very common primary malignant tumor of the central nervous system (CNS). Aging, macrophage, autophagy, and methylation related genes are hypothesized to be crucial to its pathogenesis. In this study, we aimed to explore the role of these genes in the prognosis of GBM. Methods The RNA sequence (RNA-seq) and clinical information were downloaded from The Cancer Genome Atlas database (TCGA) and the Chinese Glioma Genome Atlas database (CGGA). We performed univariate and least absolute shrinkage and selection operator (LASSO) multivariate Cox regression analysis to identify risk signatures related to overall survival (OS). We further developed a nomogram to predict individual outcomes. In addition, the immune microenvironment was analyzed by CIBERSORT. Results 256 differentially expressed genes (DEGs) were obtained based on aging, macrophage, autophagy, and methylation related genes between GBM samples and normal tissues in TCGA-GBM cohort. We identified five optimal risk signatures with prognostic values in TCGA-GBM cohort and established a prognostic risk score model. The validity of the model was verified in the CGGA cohort and Huanhu cohort. Finally, we constructed a nomogram for clinical application by combining age, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, and risk score. Activated NK cells and resting mast cells were highly expressed and memory B cells, plasma cells, resting NK cells, M1 macrophages, and neutrophils exhibited low expression in the high-risk score group. GBM patients with a low-risk score had a higher Tumor Immune Dysfunction and Exclusion (TIDE) score. The risk score of hot tumors was higher than that of the cold tumors. Additionally, 29 genes involved in glucose and lipid metabolism were highly expressed with a high-risk score. 31 metabolism-related pathways were significantly different between high-risk and low-risk groups. Conclusions We constructed and validated a novel prognostic model for GBM. Aging, macrophage, autophagy, and methylation related genes may serve as prognostic and therapeutic biomarkers. The model developed may assist in guiding treatment for GBM patients. Our research had great significance in accurately predicting the prognosis of GBM and may offer reference for immunotherapy decision for GBM patients.
Collapse
Affiliation(s)
- Le Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Xiaoling Yan
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Yahong Wang
- Nero-oncology Center, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Qin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Yan Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Medical Engineering and Translational Medicine Research Institute, Tianjin University of Medicine, Tianjin, 300072, China
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, 300350, China
| |
Collapse
|
2
|
Yu W, Lin X, Leng S, Hou Y, Dang Z, Xue S, Li N, Zhang F. The PRC2 complex epigenetically silences GATA4 to suppress cellular senescence and promote the progression of breast cancer. Transl Oncol 2024; 46:102014. [PMID: 38843657 PMCID: PMC11214403 DOI: 10.1016/j.tranon.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The transcription factor GATA4 is pivotal in cancer development but is often silenced through mechanisms like DNA methylation and histone modifications. This silencing suppresses the transcriptional activity of GATA4, disrupting its normal functions and promoting cancer progression. However, the precise molecular mechanisms and implications of GATA4 silencing in tumorigenesis remain unclear. Here, we aim to elucidate the mechanisms underlying GATA4 silencing and explore its role in breast cancer progression and its potential as a therapeutic target. METHODS The GATA4-breast cancer prognosis link was explored via bioinformatics analyses, with GATA4 expression measured in breast tissues. Functional gain/loss experiments were performed to gauge GATA4's impact on breast cancer cell malignancy. GATA4-PRC2 complex interaction was analyzed using silver staining and mass spectrometry. Chromatin immunoprecipitation, coupled with high-throughput sequencing, was used to identify GATA4-regulated downstream target genes. The in vitro findings were validated in an in situ breast cancer xenograft mouse model. RESULTS GATA4 mutation and different breast cancer subtypes were correlated, suggesting its involvement in disease progression. GATA4 suppressed cell proliferation, invasion, and migration while inducing apoptosis and senescence in breast cancer cells. The GATA4-PRC2 complex interaction silenced GATA4 expression, which altered the regulation of FAS, a GATA4 downstream gene. In vivo experiments verified that GATA4 inhibits tumor growth, suggesting its regulatory function in tumorigenesis. CONCLUSIONS This comprehensive study highlights the epigenetic regulation of GATA4 and its impact on breast cancer development, highlighting the PRC2-GATA4-FAS pathway as a potential target for therapeutic interventions in breast cancers.
Collapse
Affiliation(s)
- Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaona Lin
- Department of Cardiovascular Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China
| | - Shuai Leng
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yiming Hou
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Zhiqiao Dang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4, Duanxin West Road, Jinan, Shandong 250022, China; Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Fengquan Zhang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
3
|
AlSalman H, alsayegh H, Elmukhtar N, AlZahrani A, AlBakheet S, AlAlwan Q, Almuslim A, AlRehaily H, Salman MA. Dendritic fibromyxolipoma with intramuscular involvement: A case mimicking slow flow vascular malformation on imaging. Radiol Case Rep 2024; 19:1333-1339. [PMID: 38292809 PMCID: PMC10825525 DOI: 10.1016/j.radcr.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Dendritic fibromyxolipoma (DFML) is a benign, very rare, and slow-growing soft tissue tumor commonly involving the muscular fascia of the foot, calf, shoulders, back, or head and neck muscles. Many authors consider dendritic fibromyxolipoma a variant of spindle cell lipoma composed of a plexiform vascular pattern, dendritic cytoplasmic processes, and keloidal collagen. Only a few cases have been reported in the shoulder region, and the presented case represents the second case in English literature whose histopathology showed intramuscular involvement. Recognition of such an entity is essential because it is considered a scarce type of benign tumor that can be mistaken for other aggressive neoplasms of myxoid pathology. We present a case of a dendritic fibromyxolipoma around the right shoulder with intramuscular involvement to the superficial fibers of the right trapezius muscle.
Collapse
Affiliation(s)
- Hashim AlSalman
- Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, 11426, Saudi Arabia
| | - Hassan alsayegh
- Department of Medical Imaging, King Fahad Hospital, Hofuf, 36441, Saudi Arabia
| | - Nada Elmukhtar
- Department of Pathology, King Fahad Hospital, Hofuf, 36441, Saudi Arabia
| | - Ahmad AlZahrani
- Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, 11426, Saudi Arabia
| | - Salman AlBakheet
- Department of Medical Imaging, King Fahad Hospital, Hofuf, 36441, Saudi Arabia
| | - Qasem AlAlwan
- Department of Medical Imaging, King Fahad Hospital, Hofuf, 36441, Saudi Arabia
| | - Ahmed Almuslim
- Department of Medical Imaging, AlMoosa Specialist Hospital, al-Mubarraz, 36441, Saudi Arabia
| | - Haniyya AlRehaily
- Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, 11426, Saudi Arabia
| | - Mohammed Al Salman
- Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
4
|
Trąbska-Kluch B, Braun M, Orzechowska M, Paszek S, Zuchowska A, Sołek J, Kluska A, Fijuth J, Jesionek-Kupnicka D, Zawlik I. Potential Prognostic Value of GATA4 Depends on the p53 Expression in Primary Glioblastoma Patients. Genes (Basel) 2023; 14:1146. [PMID: 37372326 DOI: 10.3390/genes14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary glioblastoma is characterized by an extremely poor prognosis. The promoter methylation of GATA4 leads to the loss of its expression in many cancer types. The formation of high-grade astrocytomas can be promoted by the concurrent loss of TP53 and GATA4 in normal human astrocytes. Nevertheless, the impact of GATA4 alterations with linkage to TP53 changes in gliomagenesis is poorly understood. This study aimed to evaluate GATA4 protein expression, GATA4 promoter methylation, p53 expression, TP53 promoter methylation, and mutation status in patients with primary glioblastoma and to assess the possible prognostic impact of these alterations on overall survival. MATERIALS AND METHODS Thirty-one patients with primary glioblastoma were included. GATA4 and p53 expressions were determined immunohistochemically, and GATA4 and TP53 promoter methylations were analyzed via methylation-specific PCR. TP53 mutations were investigated via Sanger sequencing. RESULTS The prognostic value of GATA4 depends on p53 expression. Patients without GATA4 protein expression were more frequently negative for TP53 mutations and had better prognoses than the GATA4 positive patients. In patients positive for GATA4 protein expression, p53 expression was associated with the worst outcome. However, in patients positive for p53 expression, the loss of GATA4 protein expression seemed to be associated with improved prognosis. GATA4 promoter methylation was not associated with a lack of GATA4 protein expression. CONCLUSIONS Our data indicate that there is a possibility that GATA4 could function as a prognostic factor in glioblastoma patients, but in connection with p53 expression. A lack of GATA4 expression is not dependent on GATA4 promoter methylation. GATA4 alone has no influence on survival time in glioblastoma patients.
Collapse
Affiliation(s)
- Berenika Trąbska-Kluch
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 93-513 Lodz, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Alina Zuchowska
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Adam Kluska
- Brachytherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | | | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
5
|
Patel RS, Romero R, Watson EV, Liang AC, Burger M, Westcott PMK, Mercer KL, Bronson RT, Wooten EC, Bhutkar A, Jacks T, Elledge SJ. A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells. Nat Commun 2022; 13:256. [PMID: 35017504 PMCID: PMC8752777 DOI: 10.1038/s41467-021-27731-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
The GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.
Collapse
Affiliation(s)
- Rupesh S Patel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Scripps Green Hospital, San Diego, CA, USA
| | - Rodrigo Romero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emma V Watson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anthony C Liang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Megan Burger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Eric C Wooten
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Lopes-Ramos CM, Belova T, Brunner TH, Ben Guebila M, Osorio D, Quackenbush J, Kuijjer ML. Regulatory Network of PD1 Signaling Is Associated with Prognosis in Glioblastoma Multiforme. Cancer Res 2021; 81:5401-5412. [PMID: 34493595 PMCID: PMC8563450 DOI: 10.1158/0008-5472.can-21-0730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023]
Abstract
Glioblastoma is an aggressive cancer of the brain and spine. While analysis of glioblastoma 'omics data has somewhat improved our understanding of the disease, it has not led to direct improvement in patient survival. Cancer survival is often characterized by differences in gene expression, but the mechanisms that drive these differences are generally unknown. We therefore set out to model the regulatory mechanisms associated with glioblastoma survival. We inferred individual patient gene regulatory networks using data from two different expression platforms from The Cancer Genome Atlas. We performed comparative network analysis between patients with long- and short-term survival. Seven pathways were identified as associated with survival, all of them involved in immune signaling; differential regulation of PD1 signaling was validated to correspond with outcome in an independent dataset from the German Glioma Network. In this pathway, transcriptional repression of genes for which treatment options are available was lost in short-term survivors; this was independent of mutational burden and only weakly associated with T-cell infiltration. Collectively, these results provide a new way to stratify patients with glioblastoma that uses network features as biomarkers to predict survival. They also identify new potential therapeutic interventions, underscoring the value of analyzing gene regulatory networks in individual patients with cancer. SIGNIFICANCE: Genome-wide network modeling of individual glioblastomas identifies dysregulation of PD1 signaling in patients with poor prognosis, indicating this approach can be used to understand how gene regulation influences cancer progression.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tatiana Belova
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | | | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Daniel Osorio
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Channing Division of Network Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.,Corresponding Author: Marieke L. Kuijjer, Centre for Molecular Medicine Norway, University of Oslo, Guastadalléen 21, Oslo 0318, Norway. Phone: 47-22840528; E-mail:
| |
Collapse
|
7
|
Yin A, Shang Z, Etcheverry A, He Y, Aubry M, Lu N, Liu Y, Mosser J, Lin W, Zhang X, Dong Y. Integrative analysis identifies an immune-relevant epigenetic signature for prognostication of non-G-CIMP glioblastomas. Oncoimmunology 2021; 10:1902071. [PMID: 33854822 PMCID: PMC8018210 DOI: 10.1080/2162402x.2021.1902071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The clinical and molecular implications of DNA methylation alterations remain unclear among the majority of glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP); integrative multi-level molecular profiling may provide useful information. Independent cohorts of non-G-CIMP GBMs or IDH wild type (wt) lower-grade gliomas (LGGs) from local and public databases with DNA methylation and gene expression microarray data were included for discovery and validation of a multimarker signature, combined using a RISK score model. Bioinformatic and in vitro functional analyses were employed for biological validation. Using a strict multistep selection approach, we identified eight CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs, independent of age, the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, treatments and other identified CpGs. An epigenetic RISK signature of the 8 CpGs was developed and validated to robustly and independently prognosticate prognosis in different cohorts of not only non-G-GIMP GBMs, but also IDHwt LGGs. It also showed good discriminating value in stratified cohorts by current clinical and molecular factors. Bioinformatic analysis revealed consistent correlation of the epigenetic signature to distinct immune-relevant transcriptional profiles of GBM bulks. Functional experiments showed that S100A2 appeared to be epigenetically regulated by one identified CpG and was associated with GBM cell proliferation, apoptosis, invasion, migration and immunosuppression. The prognostic 8-CpGs RISK score signature may be of promising value for refining current glioma risk classification, and its potential links to distinct immune phenotypes make it a promising biomarker candidate for predicting response to anti-glioma immunotherapy.
Collapse
Affiliation(s)
- Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China.,Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Zhende Shang
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, The People's Republic of China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Faculté de Médecine, Université Rennes1, UEB, UMS 3480 Biosit, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Yalong He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Nan Lu
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Yuhe Liu
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Faculté de Médecine, Université Rennes1, UEB, UMS 3480 Biosit, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Yu Dong
- Department of Stomatology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, The People's Republic of China.,State Key Laboratory of Military Stomatology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| |
Collapse
|
8
|
Hypermethylation of tumor necrosis factor decoy receptor gene in non-small cell lung cancer. Oncol Lett 2020; 20:155-164. [PMID: 32565943 PMCID: PMC7286129 DOI: 10.3892/ol.2020.11565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Abnormal methylation of the TNFRSF10C and TNFRSF10D genes has been observed in numerous types of cancer; however, no studies have investigated the methylation of these genes in non-small cell lung cancer (NSCLC). The aim of the present study was to investigate the association between TNFRSF10C and TNFRSF10D methylation and NSCLC. Methylation levels of 44 pairs of NSCLC tumor tissues and distant non-tumor tissues were analyzed using quantitative methylation specific PCR and methylation reference percentage values (PMR). The methylation levels of the TNFRSF10C gene in NSCLC tumor tissue samples were significantly higher compared with those in the distant non-tumor tissues (median PMR, 2.73% vs. 0.75%; P=0.013). Subgroup analysis demonstrated that the methylation levels of TNFRSF10C in tumor tissues from male patients were significantly higher compared with those in distant non-tumor tissues (median PMR, 2.73% vs. 0.75%; P=0.041). The levels of TNFRSF10C methylation were also higher in the tumor tissues of patients who were non-smokers compared with their distant non-tumor tissues (median PMR, 2.50% vs. 0.63%; P=0.013). TNFRSF10C methylation levels were higher in the tumor tissues from male patients compared with those from female patients (median PMR, 2.50% vs. 0.63%; P=0.031). However, no significant differences in the methylation levels of the TNFRSF10D gene were observed between the sexes. Using the cBioPortal and The Cancer Genome Atlas lung cancer data, it was demonstrated that TNFRSF10C methylation levels were inversely correlated with TNFRSF10C mRNA expression levels (r=-0.379; P=0.008). In addition, demethylation of lung cancer cell lines A549 and NCI-H1299 using 5'-aza-deoxycytidine further confirmed that TNFRSF10C hypomethylation was associated with significant upregulation of TNFRSF10C mRNA expression levels [A549 fold-change (FC)=8; P=1.0×10-4; NCI-H1299 FC=3.163; P=1.143×10-5]. A dual luciferase reporter gene assay was also performed with the insert of TNFRSF10C promoter region, and the results revealed that the TNFRSF10C gene fragment significantly enhanced the transcriptional activity of the reporter gene compared with that in the control group (FC=1.570; P=0.032). Overall, the results of the present study demonstrated that hypermethylation of TNFRSF10C was associated with NSCLC.
Collapse
|
9
|
Zhu H, Zhu H, Tian M, Wang D, He J, Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front Genet 2020; 11:347. [PMID: 32328088 PMCID: PMC7160865 DOI: 10.3389/fgene.2020.00347] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries have led to the development of novel ideas and techniques that have helped elucidate the correlation between epigenetics and tumor biology. Nowadays, the field of tumor genetics has evolved to include a new type of regulation by epigenetics. An increasing number of studies have demonstrated the importance of DNA methylation and hydroxymethylation in specific genes in the progression of cervical cancer. Determining the methylation and hydroxymethylation profiles of these genes will help in the early prevention and diagnosis, monitoring recurrence, prognosis, and treatment of patients with cervical cancer. In this review, we focus on the significance of aberrant DNA methylation and hydroxymethylation in cervical cancer and the use of these epigenetic signatures in clinical settings.
Collapse
Affiliation(s)
- Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Sun J, Zhang J, Wang Y, Li Y, Zhang R. A Pilot Study of Aberrant CpG Island Hypermethylation of SPRED1 in Acute Myeloloid Leukemia. Int J Med Sci 2019; 16:324-330. [PMID: 30745814 PMCID: PMC6367533 DOI: 10.7150/ijms.27757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Epigenetic silencing of tumor suppressor genes plays important role in acute myeloid leukemia (AML). Recently, SPRED1, a negative regulator of the RAS MAPK pathway, is identified as a tumour suppressor downregulated in AML. However, little is known regarding its underlying dysregulation in AML. In this study, we investigated methylation status of SPRED1 promoters and their association with mRNA levels in AML. Methods: Methylation level were measured in four regions of SPRED1 (#1: 310 bp ~ 723 bp, #2: 810 bp ~ 1299 bp, #3: 1280 bp ~ 1742 bp and #4: 1715 bp ~ 2059 bp) in a total of 16 patients with de novonon-acute promyelocytic leukemia (non-APL) and three patients who got complete remission after induction treatment using the Sequenom MassARRAY platform. Quantitative real-time polymerase chain reaction (q-RT PCR) was used to analyze SPRED1 mRNA levels. Results: AML patients had a significantly higher average methylation level than controls at regions of #1_CpG_1 (p= 0.04) and #1_CpG_11 (p =0.002). The methylation values for #1_CpG_11 were negatively correlated with mRNA levels (r= -0.558, p=0.013) but there was no significant association between #1_CpG_1 methylation status and mRNA levels (r=-0.103, p=0.675) in AML patients. There was no significant difference in the methylation level when comparing with clinical biochemical parameters and treatment response (p>0.05). Mutations of epigenetic regulation genes such as DNMT3A, TET2 and IDH1/2 were most frequently observed in patients with higher methylation levels. Decreased methylation levels were revealed in three patients who got complete remission. Conclusions: Aberrant methylation statuses of the SPRED1 promoter regions are associated with the downregulation of gene transcription in AML. The methylation level is probably associated with the treatment response of AML. Mutations of epigenetic regulation genes might be involved in the epigenetic aberration of SPRED1.
Collapse
Affiliation(s)
- Jingwen Sun
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Yue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| |
Collapse
|
11
|
Zhou C, Pan R, Hu H, Li B, Dai J, Ying X, Yu H, Zhong J, Mao Y, Zhang Y, Wu D, Duan S. TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer. PeerJ 2018; 6:e5336. [PMID: 30225159 PMCID: PMC6139245 DOI: 10.7717/peerj.5336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Abnormal methylation of TNFRSF10C was found to be associated with different types of cancers, excluding colorectal cancer (CRC). In this paper, the performance of TNFRSF10C methylation in CRC was studied in two stages. Method The discovery stage was involved with 38 pairs of CRC tumor and paired adjacent non-tumor tissues, and 69 pairs of CRC tumor and paired adjacent non-tumor tissues were used for the validation stage. Quantitative methylation specific PCR (qMSP) method and percentage of methylated reference (PMR) were used to test and represent the methylation level of TNFRSF10C, respectively. A dual-luciferase reporter gene experiment was conducted to evaluate the promoter activity of TNFRSF10C fragment. Results A significant association of TNFRSF10C promoter hypermethylation with CRC was found and validated (discovery stage: 24.67 ± 7.52 vs. 3.36 ± 0.89; P = 0.003; validation stage: 31.21 ± 12.48 vs. 4.52 ± 1.47; P = 0.0005). Subsequent analyses of TCGA data among 46 pairs of CRC samples further confirmed our findings (cg23965061: P = 4E - 6; cg14015044: P = 1E - 7). Dual-luciferase reporter gene assay revealed that TNFRSF10C fragment was able to significantly promote gene expression (Fold change = 2.375, P = 0.013). Our data confirmed that TNFRSF10C promoter hypermethylation can predict shorter overall survival of CRC patients (P = 0.032). Additionally, bioinformatics analyses indicated that TNFRSF10C hypermethylation was significantly associated with lower TNFRSF10C expression. Conclusion Our work suggested that TNFRSF10C hypermethylation was significantly associated with the risk of CRC.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Tao YF, Fang F, Hu SY, Lu J, Cao L, Zhao WL, Xiao PF, Li ZH, Wang NN, Xu LX, Du XJ, Sun LC, Li YH, Li YP, Xu YY, Ni J, Wang J, Feng X, Pan J. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia. BMC Cancer 2015; 15:756. [PMID: 26490736 PMCID: PMC4618362 DOI: 10.1186/s12885-015-1760-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Methods Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. Results MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Conclusions Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis revealed significantly shorter overall survival in pediatric AML with GATA4 promoter methylation but multivariate analysis shows that it is not an independent factor. However, further research focusing on the mechanism of GATA4 in pediatric leukemia is required. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1760-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Fang Tao
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Fang Fang
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Jun Lu
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Lan Cao
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Na-Na Wang
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yin chuan, China.
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Yan-Hong Li
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Yi-Ping Li
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Yun-Yun Xu
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China.
| | - Jian Wang
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Xing Feng
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| | - Jian Pan
- Department of Hematology and Oncology, Childrens Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Chmelarova M, Kos S, Dvorakova E, Spacek J, Laco J, Ruszova E, Hrochova K, Palicka V. Importance of promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. Clin Chem Lab Med 2015; 52:1229-34. [PMID: 24651021 DOI: 10.1515/cclm-2013-0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Epigenetic changes are considered to be a frequent event during tumor development. Various methylation changes have been identified and show promise as potential cancer biomarkers. The aim of this study was to investigate promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. METHODS To search for promoter methylation of GATA4 and TP53 genes we used methylation-specific PCR (MSP) to compare the methylation status of 54 patients with endometrioid carcinoma of endometrium and 18 patients with normal endometrial tissue. RESULTS In our study MSP revealed GATA4 promoter methylation in 44 of 54 in the carcinoma group (81.5%), and in none of the control group. No methylation was observed in TP53 gene. CONCLUSIONS In conclusion, our study showed that there is significantly higher methylation in GATA4 gene in the endometrial cancer group compared with samples of non-neoplastic endometrium. The finding suggests the importance of hypermethylation of this gene in endometrial carcinogenesis and could have implications for future diagnostic and therapeutic strategies for endometrial cancer based on epigenetic changes.
Collapse
|
14
|
Debata PR, Curcio GM, Mukherjee S, Banerjee P. Causal Factors for Brain Tumor and Targeted Strategies. SPRINGER PROCEEDINGS IN PHYSICS 2014. [DOI: 10.1007/978-3-319-02207-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Shilo K, Wu X, Sharma S, Welliver M, Duan W, Villalona-Calero M, Fukuoka J, Sif S, Baiocchi R, Hitchcock CL, Zhao W, Otterson GA. Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors. Diagn Pathol 2013; 8:201. [PMID: 24326178 PMCID: PMC3933389 DOI: 10.1186/1746-1596-8-201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022] Open
Abstract
Background Protein arginine methyltransferase-5 (PRMT5) is a chromatin-modifying enzyme capable of methylating histone and non-histone proteins, and is involved in a wide range of cellular processes that range from transcriptional regulation to organelle biosynthesis. As such, its overexpression has been linked to tumor suppressor gene silencing, enhanced tumor cell growth and survival. Material and methods Quantitative real-time polymerase chain reaction, Western immunoblot and immunohistochemistry were used to characterize PRMT5 expression in lung cancer cell lines and human tumors. Clinicopathological findings of tissue microarray based samples from 229 patients with non-small cell lung carcinomas (NSCLC) and 133 cases with pulmonary neuroendocrine tumors (NET) were analyzed with regard to nuclear and cytoplasmic PRMT5 expression. Results There was statistically significant difference in PRMT5 messenger RNA expression between tumors and nonneoplastic lung tissues. Immunoblot experiments showed abundant expression of PRMT5 and its symmetric methylation mark H4R3 in lung carcinoma but not in non-neoplastic human pulmonary alveolar and bronchial epithelial cell lines. More than two thirds of lung tumors expressed PRMT5. High levels of cytoplasmic PRMT5 were detected in 20.5% of NSCLC and in 16.5% of NET; high levels of nuclear PRMT5 were detected in 38.0% of NSCLC and 24.0% of NET. Cytoplasmic PRMT5 was associated with high grade in both NSCLC and pulmonary NET while nuclear PRMT5 was more frequent in carcinoid tumors (p < 0.05). Conclusion The observed findings support the role of PRMT5 in lung tumorigenesis and reflect its functional dichotomy in cellular compartments. Virtual slide The virtual slides for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/1611895162102528
Collapse
Affiliation(s)
- Konstantin Shilo
- Department of Pathology, The Wexner Medical Center at the Ohio State University, 410 W, 10th Avenue, Columbus, OH, 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sheng W, Qian Y, Wang H, Ma X, Zhang P, Diao L, An Q, Chen L, Ma D, Huang G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC Med Genomics 2013; 6:46. [PMID: 24182332 PMCID: PMC3819647 DOI: 10.1186/1755-8794-6-46] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background NKX2-5, GATA4 and HAND1 are essential for heart development, however, little is known regarding their epigenetic regulation in the pathogenesis of tetralogy of fallot (TOF). Methods Methylation levels were measured in three regions of NKX2-5 (M1: -1596 bp ~ -1374 bp, M2: -159 bp ~ 217 bp and M3: 1058 bp ~ 1524 bp), one region of GATA4 (M: -392 bp ~ 107 bp) and three regions of HAND1 (M1: -887 bp ~ -414 bp, M2: -436 bp ~ 2 bp and M3: 37 bp ~ 398 bp) using the Sequenom MassARRAY platform. QRT-PCR was used to analyze NKX2-5 and HAND1 mRNA levels in the right ventricular myocardium of TOF patients. Results TOF patients had a significantly higher NKX2-5_M3 median methylation level than controls (41.65% vs. 22.18%; p = 0.0074; interquartile range [IQR]: 30.46%–53.35%, N = 30 and 20.07%–24.31%, N = 5; respectively). The HAND1_M1 median methylation level was also significantly higher in TOF patients than controls (30.05% vs. 17.54%; p = 0.0054; IQR: 20.77%–40.89%, N = 30 and IQR: 14.69%–20.64%; N = 6; respectively). The methylation statuses of NKX2-5_M1, NKX2-5_M2, GATA4_M, HAND1_M2 or HAND1_M3 were not significantly different in TOF patients compared to controls. The methylation values for NKX2-5_M3 were negatively correlated with mRNA levels (r = - 0.463, p = 0.010, N = 30) and there was a significant association between HAND1_M1 methylation status and mRNA levels (r = - 0.524, p = 0.003, N = 30) in TOF patients. Conclusions Aberrant methylation statuses of the NKX2-5 gene body and HAND1 promoter regions are associated with the regulation of gene transcription in TOF patients and may play an important role in the pathogenesis of TOF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Duan Ma
- Children Hospital of Fudan University, Shanghai 201102, China.
| | | |
Collapse
|