1
|
Demidov D, Lermontova I, Moebes M, Kochevenko A, Fuchs J, Weiss O, Rutten T, Sorge E, Zuljan E, Giehl RFH, Mascher M, Somasundaram S, Conrad U, Houben A. Haploid induction by nanobody-targeted ubiquitin-proteasome-based degradation of EYFP-tagged CENH3 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7243-7254. [PMID: 36067007 DOI: 10.1093/jxb/erac359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The generation of haploid plants accelerates the crop breeding process. One of the haploidization strategies is based on the genetic manipulation of endogenous centromere-specific histone 3 (CENH3). To extend the haploidization toolbox, we tested whether targeted in vivo degradation of CENH3 protein can be harnessed to generate haploids in Arabidopsis thaliana. We show that a recombinant anti-GFP nanobody fused to either heterologous F-box (NSlmb) or SPOP/BTB ligase proteins can recognize maternally derived enhanced yellow fluorescent protein (EYFP)-tagged CENH3 in planta and make it accessible for the ubiquitin-proteasome pathway. Outcrossing of the genomic CENH3-EYFP-complemented cenh3.1 mother with plants expressing the GFP-nanobody-targeted E3 ubiquitin ligase resulted in a haploid frequency of up to 7.6% in pooled F1 seeds. EYFP-CENH3 degradation occurred independently in embryo and endosperm cells. In reciprocal crosses, no haploid induction occurred. We propose that the uniparental degradation of EYFP-fused genomic CENH3 during early embryogenesis leads to a decrease in its level at centromeres and subsequently weakens the centromeres. The male-derived wild type CENH3 containing centromere outcompetes the CENH3-EYFP depleted centromere. Consequently, maternal chromosomes undergo elimination, resulting in haploids.
Collapse
Affiliation(s)
- Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Michael Moebes
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Andriy Kochevenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Eberhard Sorge
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Erika Zuljan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Ricardo Fabiano Hettwer Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Saravanakumar Somasundaram
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| |
Collapse
|
2
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF. Systems biology approach in plant abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:58-73. [PMID: 29096174 DOI: 10.1016/j.plaphy.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 05/05/2023]
Abstract
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Science, King Saud University, P.O. Box 24160, Riyadh, 11451, Saudi Arabia
| |
Collapse
|