1
|
Gohar IMA, Alyamani A, Shafi ME, Mohamed EAE, Ghareeb RY, Desoky EM, Hasan ME, Zaitoun AF, Abdelsalam NR, El-Tarabily KA, Elnahal ASM. A quantitative and qualitative assessment of sugar beet genotype resistance to root-knot nematode, Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2023; 13:966377. [PMID: 36714787 PMCID: PMC9881751 DOI: 10.3389/fpls.2022.966377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Sugar beet productivity is highly constrained by the root-knot nematode (RKN) Meloidogyne incognita. Eight sugar beet genotypes were screened under greenhouse conditions for their susceptibility to M. incognita according to an adapted quantitative scheme for assignment Canto-Saenz's host suitability (resistance) designations (AQSCS). Besides, the degree of susceptibility or tolerance of the examined genotypes was recorded by the modified host-parasite index (MHPI) scale based on yield performance. In addition, single nucleotide polymorphism (SNP) was also determined. Sugar beet genotypes have been classified into four categories for their susceptibility or tolerance according to the AQSCS scale. The first category, the moderately resistant (MR) group implies only one variety named SVH 2015, which did not support nematode reproduction (RF≤1), and had less root damage (GI≈2). Second, the tolerant group (T) involving Lilly and Halawa KWS supported fairly high nematode reproduction (RF>1) with relatively plant damage (GI≤2). Whereas the susceptible (S) category involved four varieties, FARIDA, Lammia KWS, Polat, and Capella, which supported nematode reproduction factor (RF>1) with high plant damage (GI>2). The fourth category refers to the highly susceptible (HYS) varieties such as Natura KWS that showed (RF≤1) and very high plant damage (GI>2). However, the MHPI scale showed that Lammia KWS variety was shifted from the (S) category to the (T) category. Results revealed significant differences among genotypes regarding disease severity, yield production, and quality traits. The SVH 2015 variety exhibited the lowest disease index values concerning population density with 800/250 cm3 soils, RF=2, root damage/gall index (GI=1.8), gall size (GS=2.3), gall area (GA=3.7), damage index (DI=3.4), susceptibility rate (SR=2.4), and MHP index (MHPI=2.5). However, Lammia KWS showed the highest disease index values regarding population density with 8890/250 cm3 soils, RF= 22.2, GI= 4.8, and SR= 14.1. Meanwhile, Natura KWS the highest GS, GA and MHPI with 7.1, 8 and 20.9, respectively. The lowest DI was achieved by Capella (DI= 6) followed by Lammia KWS (DI= 5.9). For yield production, and quality traits, SVH 2015 exhibited the lowest reductions of sugar yields/beet's root with 11.1%. While Natura KWS had the highest reduction with 79.3%, as well as it showed the highest reduction in quality traits; including sucrose, T.S.S, and purity with 65, 27.3, and 51.9%, respectively. The amino acid alignment and prediction of the DNA sequences revealed the presence of five SNPs among all sugar beet verities.
Collapse
Affiliation(s)
- Ibrahim M. A. Gohar
- Sugar Crops Research Institute, Department of Sugar Crops Disease and Pests Research, Agricultural Research Center, Giza, Egypt
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elshaimaa A. E. Mohamed
- Sugar Crops Research Institute, Department of Genetic and Breeding, Agricultural Research Center, Giza, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Elsayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amera F. Zaitoun
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed S. M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato. Sci Rep 2020; 10:11392. [PMID: 32647195 PMCID: PMC7347568 DOI: 10.1038/s41598-020-67848-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
SolariX is a compendium of DNA sequence tags from the nucleotide binding site (NBS) domain of disease resistance genes of the common potato, Solanum tuberosum Group Tuberosum. The sequences, which we call NBS tags, for nearly all NBS domains from 91 genomes—representing a wide range of historical and contemporary potato cultivars, 24 breeding programs and 200 years—were generated using just 16 amplification primers and high-throughput sequencing. The NBS tags were mapped to 587 NBS domains on the draft potato genome DM, where we detected an average, over all the samples, of 26 nucleotide polymorphisms on each locus. The total number of NBS domains observed, differed between potato cultivars. However, both modern and old cultivars possessed comparable levels of variability, and neither the individual breeder or country nor the generation or time appeared to correlate with the NBS domain frequencies. Our attempts to detect haplotypes (i.e., sets of linked nucleotide polymorphisms) frequently yielded more than the possible 4 alleles per domain indicating potential locus intermixing during the mapping of NBS tags to the DM reference genome. Mapping inaccuracies were likely a consequence of the differences of each cultivar to the reference genome used, coupled with high levels of NBS domain sequence similarity. We illustrate that the SolariX database is useful to search for polymorphism linked with NBS-LRR R gene alleles conferring specific disease resistance and to develop molecular markers for selection.
Collapse
|
3
|
Herraiz FJ, Blanca J, Ziarsolo P, Gramazio P, Plazas M, Anderson GJ, Prohens J, Vilanova S. The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato. BMC Genomics 2016; 17:321. [PMID: 27142449 PMCID: PMC4855764 DOI: 10.1186/s12864-016-2656-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.
Collapse
Affiliation(s)
- Francisco J. Herraiz
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - José Blanca
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Pello Ziarsolo
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Pietro Gramazio
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Mariola Plazas
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Gregory J. Anderson
- />Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268-3043 USA
| | - Jaime Prohens
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Santiago Vilanova
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| |
Collapse
|
4
|
Zhao P, Sun MX. The Maternal-to-Zygotic Transition in Higher Plants: Available Approaches, Critical Limitations, and Technical Requirements. Curr Top Dev Biol 2015; 113:373-98. [PMID: 26358879 DOI: 10.1016/bs.ctdb.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fertilization marks the turnover from the gametophyte to sporophyte generation in higher plants. After fertilization, sporophytic development undergoes genetic turnover from maternal to zygotic control: the maternal-to-zygotic transition (MZT). The MZT is thought to be critical for early embryogenesis; however, little is known about the time course or developmental impact of the MZT in higher plants. Here, we discuss what is known in the field and focus on techniques used in relevant studies and their limitations. Some significant questions and technical requirements for further investigations are also discussed.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Rybarczyk-Mydłowska K, Mooyman P, van Megen H, van den Elsen S, Vervoort M, Veenhuizen P, van Doorn J, Dees R, Karssen G, Bakker J, Helder J. Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. PHYTOPATHOLOGY 2012; 102:1153-1160. [PMID: 22913411 DOI: 10.1094/phyto-05-12-0114-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Foliar nematodes, plant-parasitic representatives of the genus Aphelenchoides, constitute a minority in a group dominated by fungivorous species. Distinction between (mostly harmless) fungal feeding Aphelenchoides species and high impact plant parasites such as A. besseyi, A. fragariae, A. ritzemabosi, and A. subtenuis is severely hampered by the scarcity of informative morphological characters, some of which are only observable in specific developmental stages. Poor description of a number of non-plant-parasitic Aphelenchoides species further complicates identification. Based on (nearly) full-length small subunit ribosomal DNA (SSU rDNA) sequences (≈1,700 bp), a phylogenetic tree was generated, and the four target species appeared as distinct, well-supported groups. Notably, this genus does not constitute a monophyletic group: A. besseyi and A. ritzemabosi cluster together and they are phylogenetically isolated from A. fragariae, A. subtenuis, and most other fungivorous species. A phylum-wide SSU rDNA framework was used to identify species-specific DNA motifs. For the molecular detection of four plant-parasitic Aphelenchoides species, polymerase chain reaction primers were developed with high, identical annealing temperatures (63°C). Within the molecular framework presented here, these primers can be used for the rapid screening of plant material and soil for the presence of one or multiple foliar nematode species.
Collapse
|
6
|
Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA, Walder JA. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 2011; 11:80. [PMID: 21831278 PMCID: PMC3224242 DOI: 10.1186/1472-6750-11-80] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 12/13/2022] Open
Abstract
Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection.
Collapse
Affiliation(s)
- Joseph R Dobosy
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 5224, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Enciso-Rodríguez F, Martínez R, Lobo M, Barrero LS. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers. Genet Mol Biol 2010; 33:271-8. [PMID: 21637482 PMCID: PMC3036857 DOI: 10.1590/s1415-47572010005000016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 10/06/2009] [Indexed: 12/04/2022] Open
Abstract
The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.
Collapse
Affiliation(s)
- Felix Enciso-Rodríguez
- Biotechnology and Bioindustry Center, Colombian Corporation for Agricultural Research, CORPOICA, Mosquera, Cundinamarca Colombia
| | | | | | | |
Collapse
|
8
|
Jiménez-Gómez JM, Maloof JN. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC PLANT BIOLOGY 2009; 9:85. [PMID: 19575805 PMCID: PMC3224693 DOI: 10.1186/1471-2229-9-85] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 07/03/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Tomato species are of significant agricultural and ecological interest, with cultivated tomato being among the most common vegetable crops grown. Wild tomato species are native to diverse habitats in South America and show great morphological and ecological diversity that has proven useful in breeding programs. However, relatively little is known about nucleotide diversity between tomato species. Until recently limited sequence information was available for tomato, preventing genome-wide evolutionary analyses. Now, an extensive collection of tomato expressed sequence tags (ESTs) is available at the SOL Genomics Network (SGN). This database holds sequences from several species, annotated with quality values, assembled into unigenes, and tested for homology against other genomes. Despite the importance of polymorphism detection for breeding and natural variation studies, such analyses in tomato have mostly been restricted to cultivated accessions. Importantly, previous polymorphisms surveys mostly ignored the linked meta-information, limiting functional and evolutionary analyses. The current data in SGN is thus an under-exploited resource. Here we describe a cross-species analysis taking full-advantage of available information. RESULTS We mined 20,000 interspecific polymorphisms between Solanum lycopersicum and S. habrochaites or S. pennellii and 28,800 intraspecific polymorphisms within S. lycopersicum. Using the available meta-information we classified genes into functional categories and obtained estimations of single nucleotide polymorphisms (SNP) quality, position in the gene, and effect on the encoded proteins, allowing us to perform evolutionary analyses. Finally, we developed a set of more than 10,000 between-species molecular markers optimized by sequence quality and predicted intron position. Experimental validation of 491 of these molecular markers resulted in confirmation of 413 polymorphisms. CONCLUSION We present a new analysis of the extensive tomato EST sequences available that represents the most comprehensive survey of sequence diversity across Solanum species to date. These SNPs, plus thousands of molecular makers designed to detect the polymorphisms are available to the community via a website. Evolutionary analyses on these polymorphism uncovered sets of genes potentially important for the evolution and domestication of tomato; interestingly these sets were enriched for genes involved in response to the environment.
Collapse
Affiliation(s)
- José M Jiménez-Gómez
- Department of Plant Biology, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Julin N Maloof
- Department of Plant Biology, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Huh YS, Lowe AJ, Strickland AD, Batt CA, Erickson D. Surface-enhanced Raman scattering based ligase detection reaction. J Am Chem Soc 2009; 131:2208-13. [PMID: 19199618 PMCID: PMC2716065 DOI: 10.1021/ja807526v] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomics provides a comprehensive view of the complete genetic makeup of an organism. Individual sequence variations, as manifested by single nucleotide polymorphisms (SNPs), can provide insight into the basis for a large number of phenotypes and diseases including cancer. The ability rapidly screen for SNPs will have a profound impact on a number of applications, most notably personalized medicine. Here we demonstrate a new approach to SNP detection through the application of surface-enhanced Raman scattering (SERS) to the ligase detection reaction (LDR). The reaction uses two LDR primers, one of which contains a Raman enhancer and the other a reporter dye. In LDR, one of the primers is designed to interrogate the SNP. When the SNP being interrogated matches the discriminating primer sequence, the primers are ligated and the enhancer and dye are brought into close proximity enabling the dye's Raman signature to be detected. By detecting the Raman signature of the dye rather than its fluorescence emission, our technique avoids the problem of spectral overlap which limits number of reactions which can be carried out in parallel by existing systems. We demonstrate the LDR-SERS reaction for the detection of point mutations in the human K-ras oncogene. The reaction is implemented in an electrokinetically active microfluidic device that enables physical concentration of the reaction products for enhanced detection sensitivity and quantization. We report a limit of detection of 20 pM of target DNA with the anticipated specificity engendered by the LDR platform.
Collapse
Affiliation(s)
- Yun Suk Huh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853
| | - Adam J. Lowe
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | | | - Carl A. Batt
- Department of Food Science, Cornell University, Ithaca, New York 14853
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853
| |
Collapse
|