1
|
Vega-Retter C, Rojas-Hernández N, Cortés-Miranda J, Véliz D, Rico C. Genome scans reveal signals of selection associated with pollution in fish populations of Basilichthys microlepidotus, an endemic species of Chile. Sci Rep 2024; 14:15727. [PMID: 38977738 PMCID: PMC11231317 DOI: 10.1038/s41598-024-66121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
The Maipo River catchment is one of Chile's most polluted basins. In recent decades, discharges of untreated sewage and organic matter have caused eutrophication and water quality degradation. We employed the indigenous silverfish species Basilichthys microlepidotus as a model organism to investigate the process of adaptation and selection on genes influenced by pollution. Using variation at single nucleotide polymorphisms (SNPs), we determined the temporal stability of the population structure patterns previously identified in this species by varying SNPs. We also examined local adaptation to pollution-selected genes. Using the genotypes of 7684 loci in 180 individuals, we identified 429 and 700 loci that may be undergoing selection. We detected these loci using the FSTHET and ARLEQUIN outlier detection software, respectively. Both software packages simultaneously identified a total of 250 loci. B. microlepidotus' population structure did not change over time at contaminated or unpolluted sites. In addition, our analysis found: (i) selection of genes associated with pollution, consistent with observations in other organisms; (ii) identification of candidate genes that are functionally linked to the same biological processes, molecular functions and/or cellular components that previously showed differential expression in the same populations; and (iii) a candidate gene with differential expression and a non-synonymous substitution.
Collapse
Affiliation(s)
- Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Noemi Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Coquimbo, Chile
| | - Ciro Rico
- Instituto de Ciencias Marinas de Andalucía (ICMAN), CSIC. Campus Universitario Río San Pedro, C. Republica Saharaui, 4, 11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
2
|
de Oliveira DA, da Silva PHM, Novaes E, Grattapaglia D. Genome-wide analysis highlights genetic admixture in exotic germplasm resources of Eucalyptus and unexpected ancestral genomic composition of interspecific hybrids. PLoS One 2023; 18:e0289536. [PMID: 37552668 PMCID: PMC10409294 DOI: 10.1371/journal.pone.0289536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Eucalyptus is an economically important genus comprising more than 890 species in different subgenera and sections. Approximately twenty species of subgenus Symphyomyrtus account for 95% of the world's planted eucalypts. Discrimination of closely related eucalypt taxa is challenging, consistent with their recent phylogenetic divergence and occasional hybridization in nature. Admixture, misclassification or mislabeling of Eucalyptus germplasm resources maintained as exotics have been suggested, although no reports are available. Moreover, hybrids with increased productivity and traits complementarity are planted worldwide, but little is known about their actual genomic ancestry. In this study we examined a set of 440 trees of 16 different Eucalyptus species and 44 interspecific hybrids of multi-species origin conserved in germplasm banks in Brazil. We used genome-wide SNP data to evaluate the agreement between the alleged phylogenetic classification of species and provenances as registered in their historical records, and their observed genetic clustering derived from SNP data. Genetic structure analyses correctly assigned each of the 16 species to a different cluster although the PCA positioning of E. longirostrata was inconsistent with its current taxonomy. Admixture was present for closely related species' materials derived from local germplasm banks, indicating unintended hybridization following germplasm introduction. Provenances could be discriminated for some species, indicating that SNP-based discrimination was directly proportional to geographical distance, consistent with an isolation-by-distance model. SNP-based genomic ancestry analysis showed that the majority of the hybrids displayed realized genomic composition deviating from the expected ones based on their pedigree records, consistent with admixture in their parents and pervasive genome-wide directional selection toward the fast-growing E. grandis genome. SNP data in support of tree breeding provide precise germplasm identity verification, and allow breeders to objectively recognize the actual ancestral origin of superior hybrids to more realistically guide the program toward the development of the desired genetic combinations.
Collapse
Affiliation(s)
| | | | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| |
Collapse
|
3
|
Rosser NL, Quinton A, Davey H, Ayre DJ, Denham AJ. Genetic assessment of the value of restoration planting within an endangered eucalypt woodland. Sci Rep 2023; 13:6583. [PMID: 37085553 PMCID: PMC10121665 DOI: 10.1038/s41598-023-33720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Assessment of woodland restoration often focusses on stand demographics, but genetic factors likely influence long-term stand viability. We examined the genetic composition of Yellow Box (Eucalyptus melliodora) trees in endangered Box-Gum Grassy Woodland in SE Australia, some 30 years after planting with seeds of reportedly local provenance. Using DArT sequencing for 1406 SNPs, we compared genetic diversity and population structure of planted E. melliodora trees with remnant bushland trees, paddock trees and natural recruits. Genetic patterns imply that natural stands and paddock trees had historically high gene flow (among group pairwise FST = 0.04-0.10). Genetic diversity was highest among relictual paddock trees (He = 0.17), while diversity of revegetated trees was identical to natural bushland trees (He = 0.14). Bayesian clustering placed the revegetated trees into six genetic groups with four corresponding to genotypes from paddock trees, indicating that revegetated stands are mainly of genetically diverse, local provenance. Natural recruits were largely derived from paddock trees with some contribution from planted trees. A few trees have likely hybridised with other local eucalypt species which are unlikely to compromise stand integrity. We show that paddock trees have high genetic diversity and capture historic genetic variety and provide important foci for natural recruitment of genetically diverse and outcrossed seedlings.
Collapse
Affiliation(s)
- Natalie L Rosser
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Anthony Quinton
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Huw Davey
- Independent Researcher, Wollongong, NSW, Australia
| | - David J Ayre
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew J Denham
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
- Science, Economics and Insights Division, NSW Department of Planning and Environment, Parramatta, NSW, Australia.
| |
Collapse
|
4
|
Doyle CAT, Yap JS, Bragg J, Rossetto M, Orme A, Ooi MJK. Reproductive characteristics, population genetics, and pairwise kinship inform strategic recovery of a plant species in a fragmented landscape. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Chantelle A. T. Doyle
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Jia‐Yee Samantha Yap
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Jason Bragg
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Andrew Orme
- National Herbarium of New South Wales, Australian Institute of Botanical Science Royal Botanic Garden Sydney New South Wales Australia
| | - Mark J. K. Ooi
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
5
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Peel E, Silver L, Brandies P, Zhu Y, Cheng Y, Hogg CJ, Belov K. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. Gigascience 2022; 11:giac100. [PMID: 36310247 PMCID: PMC9618407 DOI: 10.1093/gigascience/giac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife species, immune genes are poorly annotated in nonmodel species owing to their high level of polymorphism and complex genomic organisation. Our research over the past decade and a half on Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of genome quality required to effectively annotate immune genes in order to study immunogenetic diversity. Here we set out to answer this question by manually annotating immune genes in 5 marsupial genomes and 1 monotreme genome to determine the impact of sequencing data type, assembly quality, and automated annotation on accurate immune annotation. RESULTS Genome quality is directly linked to our ability to annotate complex immune gene families, with long reads and scaffolding technologies required to reassemble immune gene clusters and elucidate evolution, organisation, and true gene content of the immune repertoire. Draft-quality genomes generated from short reads with HiC or 10× Chromium linked reads were unable to achieve this. Despite mammalian BUSCOv5 scores of up to 94.1% amongst the 6 genomes, automated annotation pipelines incorrectly annotated up to 59% of manually annotated immune genes regardless of assembly quality or method of automated annotation. CONCLUSIONS Our results demonstrate that long reads and scaffolding technologies, alongside manual annotation, are required to accurately study the immune gene repertoire of wildlife species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ying Zhu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610000, China
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
7
|
Farquharson KA, McLennan EA, Cheng Y, Alexander L, Fox S, Lee AV, Belov K, Hogg CJ. Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 2022; 25:104474. [PMID: 35754729 PMCID: PMC9218385 DOI: 10.1016/j.isci.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs aim to maintain 90% wild genetic diversity, but rarely assess functional diversity. Here, we compare both genome-wide and functional diversity (in over 500 genes) of Tasmanian devils (Sarcophilus harrisii) within the insurance metapopulation and across the species’ range (64,519 km2). Populations have declined by 80% since 1996 due to a contagious cancer, devil facial tumor disease (DFTD). However, predicted local extinctions have not occurred. Recent suggestions of selection for “resistance” alleles in the wild precipitated concerns that insurance population devils may be unsuitable for translocations. Using 830 wild samples collected at 31 locations between 2012 and 2021, and 553 insurance metapopulation devils, we show that the insurance metapopulation is representative of current wild genetic diversity. Allele frequencies at DFTD-associated loci were not substantially different between captive and wild devils. Methods presented here are valuable for others investigating evolutionary potential in threatened species, particularly ones under significant selective pressures. Developed target capture to assess functional diversity at over 500 genes Fine-scale structure exists in the genetically depauperate Tasmanian devil Insurance metapopulation is representative of wild genetic diversity Allele frequencies at disease-associated loci were similar in captivity to the wild
Collapse
Affiliation(s)
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Alexander
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew V Lee
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA 92112, USA
| |
Collapse
|
8
|
Vu TTH, Kilian A, Carling J, Lawn RJ. Consensus genetic map and QTLs for morphological and agronomical traits in mungbean using DArT markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1277-1295. [PMID: 35910434 PMCID: PMC9334499 DOI: 10.1007/s12298-022-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/03/2023]
Abstract
Mungbean is an important but understudied food legume compared with other major grain crops. Genetic studies through development of high-through put markers, linkage map construction and QTL analysis can accelerate and improve the efficiency of mining for genes for breeding in this crop. This study used four mungbean F5 recombinant inbred lines (RILs) from crosses of two wild types (ACC 1, ACC 87) and two cultivars (Berken, Kiloga) and DArT markers to construct individual and consensus linkage maps and to identify QTLs associated with 54 traits in mungbean. The number of polymorphic DArT markers identified among the four RIL populations varied from 1062 to 2013. The individual maps covered the lengths of 629.7-883.5 cM, comprising 672-981 DArT markers and 15-19 linkage groups (LG) with average distance between markers of 0.9-1.2 cM. The consensus map had the total length of 795.3 cM, comprising 1539 DArT markers and resolved 11 LGs with an average inter-marker distance of 0.65 cM. Sixty-two QTLs were identified for 39 traits across 10 LGs of the consensus map. Major QTLs were identified for two special traits, late flowering inherited from ACC 1 (6 QTLs, PVE of 11.2-29.9%) and perenniality inherited from ACC 87 (3 QTLs, PVE of 17.4-22.6%) in separate population analysis. Number of congruent QTLs across four mungbean populations and the consensus map was 18 for 13 traits. These results illustrated the high efficiency of DArT marker application in mungbean genetic dissection and suggested the future potential employment of identified QTLs for mungbean improvement.
Collapse
Affiliation(s)
- Thi Thuy Hang Vu
- College of Science and Engineering, James Cook University, Townsville, Qld 4811 Australia
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Adrzeij Kilian
- Diversity Array Technology Pty. Ltd., Monana St., Bruce, ACT, 2617 Australia
| | - Jason Carling
- Diversity Array Technology Pty. Ltd., Monana St., Bruce, ACT, 2617 Australia
| | - Robert John Lawn
- College of Science and Engineering, James Cook University, Townsville, Qld 4811 Australia
- CSIRO Agriculture, ATSIP, James Cook University, Townsville, Qld 4811 Australia
| |
Collapse
|
9
|
Mahboubi M, Talebi R, Mehrabi R, Mohammad Naji A, Maccaferri M, Kema GHJ. Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat. J Appl Genet 2022; 63:429-445. [PMID: 35482212 DOI: 10.1007/s13353-022-00696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Septoria tritici blotch (STB) caused by Zymoseptoria tritici is one of the most important foliar diseases of wheat causing significant yield losses worldwide. In this study, a panel of bread wheat genotypes comprised 185 globally diverse genotypes were tested against 10 Z. tritici isolates at the seedling stage. Genome-wide association study (GWAS) using high-throughput DArTseq markers was performed and further gene expression analysis of significant markers trait association (MTAs) associated with resistance to STB was analyzed. Disease severity level showed significant differences among wheat genotypes for resistance to different Z. tritici isolates. We found novel landrace genotypes that showed highly resistance spectra to all tested isolates. GWAS analysis resulted in 19 quantitative trait loci (QTLs) for resistance to STB that were located on 14 chromosomes. Overall, 14 QTLs were overlapped with previously known QTLs or resistance genes, as well as five potentially novel QTLs on chromosomes 1A, 4A, 5B, 5D, and 6D. Identified novel resistance sources and also novel QTLs for resistance to different Z. tritici isolates can be used for gene pyramiding and development of durable resistance cultivars in future wheat breeding programs.
Collapse
Affiliation(s)
- Mozghan Mahboubi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Reza Talebi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. .,Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands.
| | - Rahim Mehrabi
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands. .,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, POBox 8415683111, Isfahan, Iran.
| | - Amir Mohammad Naji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Binks RM, Steane DA, Byrne M. Genomic divergence in sympatry indicates strong reproductive barriers and cryptic species within Eucalyptus salubris. Ecol Evol 2021; 11:5096-5110. [PMID: 34025994 PMCID: PMC8131811 DOI: 10.1002/ece3.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow-up study required to verify their geographic or evolutionary limits. Here, we follow-up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species' range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome-wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species' range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non-contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.
Collapse
Affiliation(s)
- Rachel M. Binks
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| | - Dorothy A. Steane
- School of Natural Sciences and ARC Training Centre for Forest ValueUniversity of TasmaniaHobartTasmaniaAustralia
- CSIRO Land and WaterSandy BayTasmaniaAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| |
Collapse
|
12
|
Bragg JG, Yap JS, Wilson T, Lee E, Rossetto M. Conserving the genetic diversity of condemned populations: Optimizing collections and translocation. Evol Appl 2021; 14:1225-1238. [PMID: 34025763 PMCID: PMC8127699 DOI: 10.1111/eva.13192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
We consider approaches for conserving genetic diversity from plant populations whose destruction is imminent. We do this using SNP genotype data from two endangered species, Pimelea spicata and Eucalyptus sp. Cattai. For both species, we genotyped plants from a 'condemned' population and designed ex situ collections, characterizing how the size and composition of the collection affected the genetic diversity preserved. Consistent with previous observations, populations where genetic diversity was optimized captured more alleles than populations of equal size chosen at random. This benefit of optimization was larger when the propagation population was small. That is, small numbers of individuals (e.g. 20) needed to be selected carefully to capture a comparable proportion of alleles to optimized populations, but larger random populations (e.g. >48) captured almost as many alleles as optimized populations. We then examined strategies for generating translocation populations based on the horticultural constraints presented by each species. In P. spicata, which is readily grown from cuttings, we designed translocation populations of different sizes, using different numbers of ramets from each member of propagation populations. We then performed simulations to predict the loss of alleles from these populations over 10 generations. Large translocation populations were predicted to maintain a greater proportion of source population alleles than smaller translocation populations, but this effect was saturated beyond 200 individuals. In E. sp. Cattai, we examined strategies to promote the diversity of progeny from a conservation planting scenario with 36 individuals. This included the optimization of the spatial arrangement of the planting and supplementing the diversity of the condemned population with individuals from additional sites. In sum, we studied approaches for designing genetically diverse translocations of condemned populations for two species that require contrasting methods of propagation, illustrating the application of approaches that were useful in different circumstances.
Collapse
Affiliation(s)
- Jason G. Bragg
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- School of Biological Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- Queensland Alliance of Agriculture and Food InnovationUniversity of QueenslandSanta LuciaQLDAustralia
| | - Trevor Wilson
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
| | - Enhua Lee
- Biodiversity and Conservation DivisionDepartment of Planning, Industry and EnvironmentParramattaNSWAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- Queensland Alliance of Agriculture and Food InnovationUniversity of QueenslandSanta LuciaQLDAustralia
| |
Collapse
|
13
|
Robins TP, Binks RM, Byrne M, Hopper SD. Landscape and taxon age are associated with differing patterns of hybridization in two Eucalyptus (Myrtaceae) subgenera. ANNALS OF BOTANY 2021; 127:49-62. [PMID: 32914170 PMCID: PMC7750730 DOI: 10.1093/aob/mcaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is an important evolutionary process that can have a significant impact on natural plant populations. Eucalyptus species are well known for weak reproductive barriers and extensive hybridization within subgenera, but there is little knowledge of whether patterns of hybridization differ among subgenera. Here, we examine eucalypts of Western Australia's Stirling Range to investigate how patterns of hybridization are associated with landscape and taxon age between the two largest Eucalyptus subgenera: Eucalyptus and Symphyomyrtus. In doing so, we tested a hypothesis of OCBIL (old, climatically buffered, infertile landscape) theory that predicts reduced hybridization on older landscapes. METHODS Single nucleotide polymorphism markers were applied to confirm the hybrid status, parentage and genetic structure of five suspected hybrid combinations for subg. Eucalyptus and three combinations for subg. Symphyomyrtus. KEY RESULTS Evidence of hybridization was found in all combinations, and parental taxa were identified for most combinations. The older parental taxa assessed within subg. Eucalyptus, which are widespread on old landscapes, were identified as well-defined genetic entities and all hybrids were exclusively F1 hybrids. In addition, many combinations showed evidence of clonality, suggesting that the large number of hybrids recorded from some combinations is the result of long-term clonal spread following a few hybridization events rather than frequent hybridization. In contrast, the species in subg. Symphyomyrtus, which typically occur on younger landscapes and are more recently evolved, showed less distinction among parental taxa, and where hybridization was detected, there were high levels of introgression. CONCLUSIONS Reduced hybridization in subg. Eucalyptus relative to extensive hybridization in subg. Symphyomyrtus affirmed the hypothesis of reduced hybridization on OCBILs and demonstrate that clade divergence times, landscape age and clonality are important drivers of differing patterns of speciation and hybridization in Eucalyptus.
Collapse
Affiliation(s)
- T P Robins
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
| | - R M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - S D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
14
|
Vu NTT, Zenger KR, Guppy JL, Sellars MJ, Silva CNS, Kjeldsen SR, Jerry DR. Fine-scale population structure and evidence for local adaptation in Australian giant black tiger shrimp (Penaeus monodon) using SNP analysis. BMC Genomics 2020; 21:669. [PMID: 32993495 PMCID: PMC7526253 DOI: 10.1186/s12864-020-07084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restrictions to gene flow, genetic drift, and divergent selection associated with different environments are significant drivers of genetic differentiation. The black tiger shrimp (Penaeus monodon), is widely distributed throughout the Indian and Pacific Oceans including along the western, northern and eastern coastline of Australia, where it is an important aquaculture and fishery species. Understanding the genetic structure and the influence of environmental factors leading to adaptive differences among populations of this species is important for farm genetic improvement programs and sustainable fisheries management. RESULTS Based on 278 individuals obtained from seven geographically disparate Australian locations, 10,624 high-quality SNP loci were used to characterize genetic diversity, population structure, genetic connectivity, and adaptive divergence. Significant population structure and differentiation were revealed among wild populations (average FST = 0.001-0.107; p < 0.05). Eighty-nine putatively outlier SNPs were identified to be potentially associated with environmental variables by using both population differentiation (BayeScan and PCAdapt) and environmental association (redundancy analysis and latent factor mixed model) analysis methods. Clear population structure with similar spatial patterns were observed in both neutral and outlier markers with three genetically distinct groups identified (north Queensland, Northern Territory, and Western Australia). Redundancy, partial redundancy, and multiple regression on distance matrices analyses revealed that both geographical distance and environmental factors interact to generate the structure observed across Australian P. monodon populations. CONCLUSION This study provides new insights on genetic population structure of Australian P. monodon in the face of environmental changes, which can be used to advance sustainable fisheries management and aquaculture breeding programs.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia. .,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Melony J Sellars
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,CSIRO Agriculture & Food, Integrated Sustainable Aquaculture Production Program, Queensland Bioscience Precinct, St Lucia, 4067, Australia.,Present address: Genics Pty Ltd, Level 5, Gehrmann Building. 60 Research Road, St Lucia, QLD, 4067, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
15
|
Weston MA, Clarke K, Maguire GS, Sumner J. Morphological and molecular evidence of population divergence in a widespread shorebird across its southern mainland Australian distribution. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01286-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 2020; 753:144795. [PMID: 32450202 DOI: 10.1016/j.gene.2020.144795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The advent of genetic selection and genome modification method assure about a real novel reformation in biotechnology and genetic engineering. With the extensive capabilities of molecular markers of them being stable, cost-effective and easy to use, they ultimately become a potent tool for variety of applications such a gene targeting, selection, editing, functional genomics; mainly for the improvisation of commercially important crops. Three main benefits of molecular marker in the field of agriculture and crop improvement programmes first, reduction of the duration of breeding programmes, second, they allow creation of new genetic variation and genetic diversity of plants and third most promising benefit is help in production of engineered plant for disease resistance, or resistance from pathogen and herbicides. This review is anticipated to present an outline how the techniques have been evolved from the simple conventional applications of DNA based molecular markers to highly throughput CRISPR technology and geared the crop yield. Techniques like using Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems have revolutionised in the field of genome editing. These have been promptly accepted in both the research and commercial industry. On the whole, the widespread use of molecular markers with their types, their appliance in plant breeding along with the advances in genetic selection and genome editing together being a novel strategy to boost crop yield has been reviewed.
Collapse
Affiliation(s)
- Pallavi Dheer
- Department of Life Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, India
| | - Indra Rautela
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Vandana Sharma
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Manjul Dhiman
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Nishesh Sharma
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India.
| |
Collapse
|
17
|
Ball JW, Robinson TP, Wardell-Johnson GW, Bovill J, Byrne M, Nevill PG. Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species. Sci Rep 2020; 10:1562. [PMID: 32005887 PMCID: PMC6994521 DOI: 10.1038/s41598-020-58525-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Hybridization has an important and often positive role in plant evolution. However, it can also have negative consequences for species. Two closely related species of Ornduffia are endemic to the Porongurup Range in the South West Australian Global Biodiversity Hotspot. The rare Ornduffia calthifolia is found exclusively on the summits, while O. marchantii is more widely dispersed across a greater range of elevation and is not considered threatened. Hybridisation in suitable overlapping habitat has been suspected between them for decades. Here we combine genotyping by sequencing to verify hybridisation genetically, and fine scale (2 m resolution) species distribution modelling (SDM) to test if hybrids occur in suitable intersecting habitat. From a study area of c. 4700 ha, SDM identified c. 275 ha and c. 322 ha of suitable habitat for O. calthifolia and O. marchantii, respectively. We identified range overlap between species of c. 59 ha), which enveloped 32 individuals confirmed to be hybrids. While the hybrids were at the margin of suitable habitat for O. marchantii, their preference for elevated habitat was closer to the more narrowly distributed O. calthifolia. The combination of genetic data and fine scale spatial modelling approaches enabled a better understanding of hybridisation among taxa of conservation significance. However, the level to which hybrid proliferation and competition for habitat presents as a threat to O. calthifolia is currently unknown and requires priority in conservation management given the threats from global warming and disturbance by tourism.
Collapse
Affiliation(s)
- J W Ball
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.,ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - T P Robinson
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - G W Wardell-Johnson
- ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - J Bovill
- Centre for Australian National Biodiversity Research, National Research Collections Australia, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia.,School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - P G Nevill
- ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
18
|
Melandri G, Sikirou M, Arbelaez JD, Shittu A, Semwal VK, Konaté KA, Maji AT, Ngaujah SA, Akintayo I, Govindaraj V, Shi Y, Agosto-Peréz FJ, Greenberg AJ, Atlin G, Ramaiah V, McCouch SR. Multiple Small-Effect Alleles of Indica Origin Enhance High Iron-Associated Stress Tolerance in Rice Under Field Conditions in West Africa. FRONTIERS IN PLANT SCIENCE 2020; 11:604938. [PMID: 33584748 PMCID: PMC7874229 DOI: 10.3389/fpls.2020.604938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Understanding the genetics of field-based tolerance to high iron-associated (HIA) stress in rice can accelerate the development of new varieties with enhanced yield performance in West African lowland ecosystems. To date, few field-based studies have been undertaken to rigorously evaluate rice yield performance under HIA stress conditions. In this study, two NERICA × O. sativa bi-parental rice populations and one O.sativa diversity panel consisting of 296 rice accessions were evaluated for grain yield and leaf bronzing symptoms over multiple years in four West African HIA stress and control sites. Mapping of these traits identified a large number of QTLs and single nucleotide polymorphisms (SNPs) associated with stress tolerance in the field. Favorable alleles associated with tolerance to high levels of iron in anaerobic rice soils were rare and almost exclusively derived from the indica subpopulation, including the most favorable alleles identified in NERICA varieties. These findings highlight the complex genetic architecture underlying rice response to HIA stress and suggest that a recurrent selection program focusing on an expanded indica genepool could be productively used in combination with genomic selection to increase the efficiency of selection in breeding programs designed to enhance tolerance to this prevalent abiotic stress in West Africa.
Collapse
Affiliation(s)
- Giovanni Melandri
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Mouritala Sikirou
- Africa Rice Center, Ibadan, Nigeria
- School of Horticulture and Green Landscaping, Kétou, Bénin
| | - Juan D. Arbelaez
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | | | | | | | | | | | - Inoussa Akintayo
- Central Agricultural Research Institute, Suakoko, Liberia
- Africa Rice Center, Suakoko, Liberia
| | - Vishnu Govindaraj
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Yuxin Shi
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | | | | | - Gary Atlin
- Bill & Melinda Gates Foundation, Seattle, WA, United States
| | | | - Susan R. McCouch
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- Venuprasad Ramaiah,
| |
Collapse
|
19
|
Optimizing ddRADseq in Non-Model Species: A Case Study in Eucalyptus dunnii Maiden. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Restriction site-associated DNA sequencing (RADseq) and its derived protocols, such as double digest RADseq (ddRADseq), offer a flexible and highly cost-effective strategy for efficient plant genome sampling. This has become one of the most popular genotyping approaches for breeding, conservation, and evolution studies in model and non-model plant species. However, universal protocols do not always adapt well to non-model species. Herein, this study reports the development of an optimized and detailed ddRADseq protocol in Eucalyptus dunnii, a non-model species, which combines different aspects of published methodologies. The initial protocol was established using only two samples by selecting the best combination of enzymes and through optimal size selection and simplifying lab procedures. Both single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) were determined with high accuracy after applying stringent bioinformatics settings and quality filters, with and without a reference genome. To scale it up to 24 samples, we added barcoded adapters. We also applied automatic size selection, and therefore obtained an optimal number of loci, the expected SNP locus density, and genome-wide distribution. Reliability and cross-sequencing platform compatibility were verified through dissimilarity coefficients of 0.05 between replicates. To our knowledge, this optimized ddRADseq protocol will allow users to go from the DNA sample to genotyping data in a highly accessible and reproducible way.
Collapse
|
20
|
Introgressive hybridisation between two widespread sharks in the east Pacific region. Mol Phylogenet Evol 2019; 136:119-127. [DOI: 10.1016/j.ympev.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022]
|
21
|
Marco de Lima B, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D. Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS One 2019; 14:e0218747. [PMID: 31233563 PMCID: PMC6590816 DOI: 10.1371/journal.pone.0218747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.
Collapse
Affiliation(s)
- Bruno Marco de Lima
- EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Department of Genetics, University of São Paulo, Piracicaba, SP, Brazil
| | - Eduardo P. Cappa
- Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Orzenil B. Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Graduate Program in Genomic Sciences, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Graduate Program in Genomic Sciences, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
22
|
Bradbury D, Binks RM, Coates DJ, Byrne M. Conservation genomics of range disjunction in a global biodiversity hotspot: a case study of Banksia biterax (Proteaceae) in southwestern Australia. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Donna Bradbury
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Rachel M Binks
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - David J Coates
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| |
Collapse
|
23
|
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1693. [PMID: 30524463 PMCID: PMC6262028 DOI: 10.3389/fpls.2018.01693] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 05/18/2023]
Abstract
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Collapse
Affiliation(s)
- Dario Grattapaglia
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Orzenil B. Silva-Junior
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
| | | | - Eduardo P. Cappa
- Centro de Investigación de Recursos Naturales, Instituto de Recursos BiológicosINTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Bárbara S. F. Müller
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
| | - Biyue Tan
- Biomaterials DivisionStora Enso AB, Stockholm, Sweden
| | - Fikret Isik
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
24
|
Abu Zaitoun SY, Jamous RM, Shtaya MJ, Mallah OB, Eid IS, Ali-Shtayeh MS. Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers. BMC PLANT BIOLOGY 2018; 18:246. [PMID: 30340523 PMCID: PMC6194588 DOI: 10.1186/s12870-018-1475-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Crop landraces embody a source of beneficial genes potentially providing endurance to environmental stress and other agronomic qualities including yield. Our study included 88 snake melon accessions (Cucumis melo var. flexuosus) collected from 9 districts in the Palestinian West-Bank. These accessions represent four landraces of Palestinian snake melon: Green, and White Baladi, and Green, and White Sahouri. RESULTS This is the first report on successful application of genotyping by sequencing in snake melon. Nine thousand seven hundred fifty single-nucleotide polymorphism (SNP) and 7400 DArTseq genetic markers were employed to evaluate genetic biodiversity and population structure of Palestinian snake melon germplasm collection. Clustering based on neighbor-joining-analysis, principle coordinate and Bayesian model implemented in Structure showed that patterns of genetic diversity of snake melon landraces depends on their geographical source and unraveled the presence of two major local landraces (Sahouri, and Baladi) with accessions from each group clustering together. A significant correlation was observed between both types of markers in Mantel correlation test. A significant association between genetic and geographic matrices (P < 0.0001) was also detected. AMOVA indicated that majority of variation (90%) was due to the difference within accessions. CONCLUSION The Palestinian landraces seem to have unique genes that may allow the enhancement of the global snake melon gene pool and developments of the plant production worldwide. Our subsequent objective is to detect genotypes with promising qualities and to conduct association mapping studies concentrating on Fusarium-wilt resistance, yield, and environmental stresses.
Collapse
Affiliation(s)
| | - Rana M. Jamous
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | - Munqez J. Shtaya
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
- Department of Plant Production and Protection, Faculty of Agriculture, An-Najah University, Tulkarm, Palestine
| | - Omar B. Mallah
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | - Imad S. Eid
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | | |
Collapse
|
25
|
Alam M, Neal J, O’Connor K, Kilian A, Topp B. Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS One 2018; 13:e0203465. [PMID: 30169500 PMCID: PMC6118395 DOI: 10.1371/journal.pone.0203465] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Macadamia (Macadamia integrifolia, M. tetraphylla and hybrids) is an Australian native nut crop and has a significant economic value in the food industries worldwide. Long juvenility along with traditional breeding strategies impede quick genetic improvement of this crop. The existing cultivars constitute only second to fourth generation of the wild germplasm in the rainforest. The utilisation of molecular markers for genomic selection and genome-wide association studies may accelerate genetic gains. Identification of a robust, reproducible, and cost-effective marker system is instrumental in increasing the efficiency of genomic studies. This study is the first to report the potential of two ultra-high-throughput diversity array technology (DArT) markers (silicoDArT and SNP) in macadamia. Both markers were used to identify the genetic diversity and population structure in 80 macadamia cultivars. Parentage analysis of 25 scions in a rootstock trial was conducted to confirm plant identity where recorded identities did not corroborate with phenotypic field observations. A total of 22,280 silicoDArT and 7,332 SNP markers were reported, of which 11,526 silicoDArT and 3,956 SNP markers were used for analyses after screening with quality control parameters including >95% call rate, >95% reproducibility, and >0.05 one ratio. The average polymorphic information content (PIC) values of silicoDArT and SNP markers were 0.29 and 0.21, respectively. Genetic variance among the cultivars ranged from 0.003 to 0.738 in silicoDArT and 0.004 to 0.412 in SNP markers. Four distinct population groups were identified from SNP data analysis. Most of the accessions used in this study were descended from two or more populations. Cluster analysis clearly separated genotypes of distinct origins, such as the Hawaii Agricultural Experiment Station and Hidden Valley Plantation accessions. Two wild accessions of Macadamia jansenii and M. ternifolia were found to be distantly related to the cultivars. Wild germplasm individuals and their hybrids with cv. ‘660’ formed separate clusters, suggesting that crossing between wild and cultivated genepools can extend genetic diversity. DArTseq-based SNP markers were successfully utilized to confirm the genetic identity of 25 scions in a rootstock trial. Our study suggests that DArT platforms are a robust system for the facilitation of genomic studies with regard to macadamia.
Collapse
Affiliation(s)
- Mobashwer Alam
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, Nambour, Queensland, Australia
- * E-mail:
| | - Jodi Neal
- Department of Agriculture and Forestry, Maroochy Research Facility, Nambour, Queensland, Australia
| | - Katie O’Connor
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, Nambour, Queensland, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Monana St., Canberra ACT, Australia
| | - Bruce Topp
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, Nambour, Queensland, Australia
| |
Collapse
|
26
|
Cappa EP, El-Kassaby YA, Muñoz F, Garcia MN, Villalba PV, Klápště J, Marcucci Poltri SN. Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:27-33. [PMID: 29650154 DOI: 10.1016/j.plantsci.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 05/04/2023]
Abstract
We investigated the impact of combining the pedigree- and genomic-based relationship matrices in a multiple-trait individual-tree mixed model (a.k.a., multiple-trait combined approach) on the estimates of heritability and on the genomic correlations between growth and stem straightness in an open-pollinated Eucalyptus grandis population. Additionally, the added advantage of incorporating genomic information on the theoretical accuracies of parents and offspring breeding values was evaluated. Our results suggested that the use of the combined approach for estimating heritabilities and additive genetic correlations in multiple-trait evaluations is advantageous and including genomic information increases the expected accuracy of breeding values. Furthermore, the multiple-trait combined approach was proven to be superior to the single-trait combined approach in predicting breeding values, in particular for low-heritability traits. Finally, our results advocate the use of the combined approach in forest tree progeny testing trials, specifically when a multiple-trait individual-tree mixed model is considered.
Collapse
Affiliation(s)
- Eduardo P Cappa
- Instituto de Recursos Biológicos (IRB), Centro de Investigación en Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, B.C., V6T 1Z4, Canada
| | | | - Martín N Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Biotecnología (IB), Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Pamela V Villalba
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Biotecnología (IB), Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, B.C., V6T 1Z4, Canada; Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Praha 6, Czech Republic
| | - Susana N Marcucci Poltri
- Instituto de Biotecnología (IB), Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
27
|
Pazmiño DA, Maes GE, Green ME, Simpfendorfer CA, Hoyos-Padilla EM, Duffy CJA, Meyer CG, Kerwath SE, Salinas-de-León P, van Herwerden L. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity (Edinb) 2018; 120:407-421. [PMID: 29321624 PMCID: PMC5889387 DOI: 10.1038/s41437-017-0025-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022] Open
Abstract
The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals. Neutral SNPs defined at least two genetically discrete geographic groups: an East Tropical Pacific (Mexico, east and west Galapagos Islands), and another central-west Pacific (Lord Howe Island, Middleton Reef, Norfolk Island, Elizabeth Reef, Kermadec, Hawaii and Southern Africa). More fine-grade population structure was suggested using outlier SNPs: west Pacific, Hawaii, Mexico, and Galapagos. Consistently, mtDNA pairwise ΦST defined three regional stocks: east, central and west Pacific. Compared to neutral SNPs (FST = 0.023-0.035), mtDNA exhibited more divergence (ΦST = 0.258-0.539) and high overall genetic diversity (h = 0.794 ± 0.014; π = 0.004 ± 0.000), consistent with the longstanding eastern Pacific barrier between the east and central-west Pacific. Hawaiian and Southern African populations group within the west Pacific cluster. Effective population sizes were moderate/high for east/west populations (738 and 3421, respectively). Insights into the biology, connectivity, genetic diversity, and population demographics informs for improved conservation of this species, by delineating three to four conservation units across their Pacific distribution. Implementing such conservation management may be challenging, but is necessary to achieve long-term population resilience at basin and regional scales.
Collapse
Affiliation(s)
- Diana A Pazmiño
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Universidad San Francisco de Quito - Galápagos Science Center, Quito, Ecuador.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium
- Laboratory for Cytogenetics and Genome Research, Center for Human Genetics, Genomics Core, KU Leuven, Leuven, Belgium
| | - Madeline E Green
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS, Australia
- CSIRO Oceans & Atmosphere, Castray Esplanade, Battery Point, Hobart, TAS, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | | | - Clinton J A Duffy
- Auckland War Memorial Museum, The Domain, Auckland, New Zealand
- Department of Conservation, Private Bag 68908, Newton, Auckland, New Zealand
| | - Carl G Meyer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Coconut Island, Kaneohe, HI, USA
| | - Sven E Kerwath
- Department of Biological Sciences, University of Cape Town, Private Bag × 3, Rondebosch, South Africa
- Department of Agriculture, Forestry and Fisheries: Fisheries Branch, Private Bag × 2, Vlaeberg, Cape Town, South Africa
| | - Pelayo Salinas-de-León
- Department of Marine Sciences, Charles Darwin Research Station. Av Charles Darwin s/n, Puerto Ayora, Galapagos Islands, Santa Cruz, Ecuador
- Pristine Seas, National Geographic Society, Washington, D. C., USA
| | - Lynne van Herwerden
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
28
|
Morse P, Kjeldsen SR, Meekan MG, Mccormick MI, Finn JK, Huffard CL, Zenger KR. Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod-the Australian Southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae). Ecol Evol 2018; 8:2253-2267. [PMID: 29468041 PMCID: PMC5817145 DOI: 10.1002/ece3.3845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
The southern blue-ringed octopus, Hapalochlaena maculosa (Hoyle, 1883) lacks a planktonic dispersal phase, yet ranges across Australia's southern coastline. This species' brief and holobenthic life history suggests gene flow might be limited, leaving distant populations prone to strong genetic divergence. This study used 17,523 genome-wide SNP loci to investigate genetic structuring and local adaptation patterns of H. maculosa among eight sampling sites along its reported range. Within sites, interrelatedness was very high, consistent with the limited dispersal of this taxon. However, inbreeding coefficients were proportionally lower among sites where substructuring was not detected, suggesting H. maculosa might possess a mechanism for inbreeding avoidance. Genetic divergence was extremely high among all sites, with the greatest divergence observed between both ends of the distribution, Fremantle, WA, and Stanley, TAS. Genetic distances closely followed an isolation by geographic distance pattern. Outlier analyses revealed distinct selection signatures at all sites, with the strongest divergence reported between Fremantle and the other Western Australian sites. Phylogenetic reconstructions using the described sister taxon H. fasciata (Hoyle, 1886) further supported that the genetic divergence between distal H. maculosa sites in this study was equivalent to that of between established heterospecifics within this genus. However, it is advocated that taxonomic delineations within this species should be made with caution. These data indicate that H. maculosa forms a clinal species pattern across its geographic range, with gene flow present through allele sharing between adjacent populations. Morphological investigations are recommended for a robust resolution of the taxonomic identity and ecotype boundaries of this species.
Collapse
Affiliation(s)
- Peter Morse
- Australian Institute of Marine ScienceUWA Oceans InstituteCrawleyWAAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Shannon R. Kjeldsen
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Mark G. Meekan
- Australian Institute of Marine ScienceUWA Oceans InstituteCrawleyWAAustralia
| | - Mark I. Mccormick
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | | | - Christine L. Huffard
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
- California Academy of SciencesSan FranciscoCAUSA
| | - Kyall R. Zenger
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
29
|
Shibata H, Sakata S, Hirano Y, Nitasaka E, Sakabe A. Facultative parthenogenesis validated by DNA analyses in the green anaconda (Eunectes murinus). PLoS One 2017; 12:e0189654. [PMID: 29236745 PMCID: PMC5728508 DOI: 10.1371/journal.pone.0189654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022] Open
Abstract
In reptiles, the mode of reproduction is typically sexual. However, facultative parthenogenesis occurs in some Squamata, such as Komodo dragon (Varanus komodoensis) and Burmese python (Python bivittatus). Here, we report facultative parthenogenesis in the green anaconda (Eunectes murinus). We found two fully developed female neonates and 17 undeveloped eggs in the oviduct of a female anaconda isolated from other individuals for eight years and two months at Ueno Zoo, Japan. To clarify the zygosity of the neonates, we analyzed 18 microsatellite markers of which 16 were informative. We observed only maternal alleles and no paternal alleles for all 16 markers. To examine the possibility of the long-term sperm storage, we estimated allele frequencies in a putative parental stock by genotyping five unrelated founders. If all founders, including the mother, are originated from a single Mendelian population, then the probability that the neonates were produced by sexual reproduction with an unrelated male via long-term sperm storage was infinitesimally small (2.31E-32 per clutch). We also examined samples from two additional offspring that the mother delivered eight years before her death. We consistently observed paternal alleles in these elder offspring, indicating that the mother had switched from sexual reproduction to asexual reproduction during the eight years of isolation. This is the first case of parthenogenesis in Eunectes to be validated by DNA analysis, and suggests that facultative parthenogenesis is widespread in the Boidae.
Collapse
Affiliation(s)
- Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Yuzo Hirano
- Ueno Zoo, 9-83, Ueno Park, Taito-ku, Tokyo, Japan
| | - Eiji Nitasaka
- Graduate School of Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ai Sakabe
- Ueno Zoo, 9-83, Ueno Park, Taito-ku, Tokyo, Japan
| |
Collapse
|
30
|
Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0967-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus. Mol Phylogenet Evol 2016; 105:63-85. [DOI: 10.1016/j.ympev.2016.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 01/07/2023]
|
32
|
Gion JM, Hudson CJ, Lesur I, Vaillancourt RE, Potts BM, Freeman JS. Genome-wide variation in recombination rate in Eucalyptus. BMC Genomics 2016; 17:590. [PMID: 27507140 PMCID: PMC4979139 DOI: 10.1186/s12864-016-2884-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Results Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = −0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = −0.75). Conclusions The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst chromosomes in recombination rates appear stable across Eucalyptus species. Together with the strong correlations between recombination rate and features of the Eucalyptus reference genome, we maintain these findings provide further evidence for a broad conservation of genome architecture across the globally significant lineages of Eucalyptus.
Collapse
Affiliation(s)
| | - Corey J Hudson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,Present address: Tasmanian Alkaloids, P.O. Box 130, Westbury, TAS, 7303, Australia
| | | | - René E Vaillancourt
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Jules S Freeman
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
33
|
Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12892-015-0037-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Tabib A, Vishwanathan S, Seleznev A, McKeown PC, Downing T, Dent C, Sanchez-Bermejo E, Colling L, Spillane C, Balasubramanian S. A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1311. [PMID: 27630650 PMCID: PMC5006647 DOI: 10.3389/fpls.2016.01311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/16/2016] [Indexed: 05/15/2023]
Abstract
Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation.
Collapse
Affiliation(s)
- Amanda Tabib
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | | | - Andrei Seleznev
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Peter C. McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
| | - Tim Downing
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
- School of Biotechnology, Dublin City UniversityDublin, Ireland
| | - Craig Dent
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | | | - Luana Colling
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
| | - Sureshkumar Balasubramanian
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
- *Correspondence: Sureshkumar Balasubramanian
| |
Collapse
|
35
|
Telfer EJ, Stovold GT, Li Y, Silva-Junior OB, Grattapaglia DG, Dungey HS. Parentage Reconstruction in Eucalyptus nitens Using SNPs and Microsatellite Markers: A Comparative Analysis of Marker Data Power and Robustness. PLoS One 2015; 10:e0130601. [PMID: 26158446 PMCID: PMC4497620 DOI: 10.1371/journal.pone.0130601] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/21/2015] [Indexed: 12/28/2022] Open
Abstract
Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.
Collapse
Affiliation(s)
- Emily J. Telfer
- Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, New Zealand
| | - Grahame T. Stovold
- Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, New Zealand
| | - Yongjun Li
- Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, New Zealand
| | - Orzenil B. Silva-Junior
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | - Dario G. Grattapaglia
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | - Heidi S. Dungey
- Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, New Zealand
| |
Collapse
|
36
|
Hudson CJ, Freeman JS, Myburg AA, Potts BM, Vaillancourt RE. Genomic patterns of species diversity and divergence in Eucalyptus. THE NEW PHYTOLOGIST 2015; 206:1378-1390. [PMID: 25678438 DOI: 10.1111/nph.13316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology.
Collapse
Affiliation(s)
- Corey J Hudson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- Tasmanian Alkaloids, PO Box 130, Westbury, TAS 7303, Australia
| | - Jules S Freeman
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- Faculty of Science, Health, Education and Engineering, and Collaborative Research Network, University of the Sunshine Coast, Locked Bag 4, Maroochydore, QLD, 4558, Australia
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - René E Vaillancourt
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
37
|
Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, Schmutz J, Plomion C, Gion JM. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. THE NEW PHYTOLOGIST 2015; 206:1283-96. [PMID: 25385325 DOI: 10.1111/nph.13150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/29/2014] [Indexed: 05/21/2023]
Abstract
Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| | - Eric Mandrou
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
| | - Ibouniyamine Nabihoudine
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | - Christophe Klopp
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| | - Jean-Marc Gion
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| |
Collapse
|
38
|
Silva-Junior OB, Faria DA, Grattapaglia D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. THE NEW PHYTOLOGIST 2015; 206:1527-40. [PMID: 25684350 DOI: 10.1111/nph.13322] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/02/2015] [Indexed: 05/23/2023]
Abstract
We used whole genome resequencing of pooled individuals to develop a high-density single-nucleotide polymorphism (SNP) chip for Eucalyptus. Genomes of 240 trees of 12 species were sequenced at 3.5× each, and 46 997 586 raw SNP variants were subject to multivariable filtering metrics toward a multispecies, genome-wide distributed chip content. Of the 60 904 SNPs on the chip, 59 222 were genotyped and 51 204 were polymorphic across 14 Eucalyptus species, providing a 96% genome-wide coverage with 1 SNP/12-20 kb, and 47 069 SNPs at ≤ 10 kb from 30 444 of the 33 917 genes in the Eucalyptus genome. Given the EUChip60K multi-species genotyping flexibility, we show that both the sample size and taxonomic composition of cluster files impact heterozygous call specificity and sensitivity by benchmarking against 'gold standard' genotypes derived from deeply sequenced individual tree genomes. Thousands of SNPs were shared across species, likely representing ancient variants arisen before the split of these taxa, hinting to a recent eucalypt radiation. We show that the variable SNP filtering constraints allowed coverage of the entire site frequency spectrum, mitigating SNP ascertainment bias. The EUChip60K represents an outstanding tool with which to address population genomics questions in Eucalyptus and to empower genomic selection, GWAS and the broader study of complex trait variation in eucalypts.
Collapse
Affiliation(s)
- Orzenil B Silva-Junior
- Laboratório de Bioinformática, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, 70790-160, Brasilia, DF, Brazil
| | - Danielle A Faria
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
| | - Dario Grattapaglia
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, 70790-160, Brasilia, DF, Brazil
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
| |
Collapse
|
39
|
Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM. Patterns of Reproductive Isolation inEucalyptus—A Phylogenetic Perspective. Mol Biol Evol 2015; 32:1833-46. [DOI: 10.1093/molbev/msv063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One 2015; 10:e0116528. [PMID: 25602379 PMCID: PMC4300219 DOI: 10.1371/journal.pone.0116528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
- * E-mail:
| | - Veeramuthu Dharanishanthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
| | - Ishangi Agarwal
- Genotypic Technology Private Limited, #2/13, Balaji Complex, Poojari Layout, 80, Feet Road, R. M. V. 2nd Stage, Bangalore-560094, India
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Büsgen Institute, Georg August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, United States of America
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
41
|
Abstract
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
Collapse
Affiliation(s)
- Atul Grover
- a Biotechnology Division , Defence Institute of Bio Energy Research , Goraparao, P.O. Arjunpur , Haldwani , Uttarakhand , India and
| | - P C Sharma
- b University School of Biotechnology, Guru Gobind Singh Indraprastha University , Dwarka Sec. 16C , New Delhi , India
| |
Collapse
|
42
|
Grattapaglia D, Mamani EMC, Silva-Junior OB, Faria DA. A novel genome-wide microsatellite resource for species ofEucalyptuswith linkage-to-physical correspondence on the reference genome sequence. Mol Ecol Resour 2014; 15:437-48. [DOI: 10.1111/1755-0998.12317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Dario Grattapaglia
- Laboratório de Genética Vegetal; EMBRAPA Recursos Genéticos e Biotecnologia; PqEB Brasilia DF 70770-970 Brazil
| | - Eva M. C. Mamani
- Laboratório de Genética Vegetal; EMBRAPA Recursos Genéticos e Biotecnologia; PqEB Brasilia DF 70770-970 Brazil
| | - Orzenil B. Silva-Junior
- Programa de Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; SGAN 916 Brasilia DF 70790-160 Brazil
- Laboratório de Bioinformática; EMBRAPA Recursos Genéticos e Biotecnologia; PqEB Brasilia DF 70770-970 Brazil
| | - Danielle A. Faria
- Laboratório de Genética Vegetal; EMBRAPA Recursos Genéticos e Biotecnologia; PqEB Brasilia DF 70770-970 Brazil
| |
Collapse
|
43
|
Bian M, Zhou M, Sun D, Li C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Cappa EP, El-Kassaby YA, Garcia MN, Acuña C, Borralho NMG, Grattapaglia D, Marcucci Poltri SN. Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS One 2013; 8:e81267. [PMID: 24282578 PMCID: PMC3839935 DOI: 10.1371/journal.pone.0081267] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/10/2013] [Indexed: 01/01/2023] Open
Abstract
The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus.
Collapse
Affiliation(s)
- Eduardo P. Cappa
- Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
- * E-mail:
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Martín N. Garcia
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Cintia Acuña
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Nuno M. G. Borralho
- Private Consultant, Cartaxo, Portugal and Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology and Genomic Sciences Program, Universidade Católica de Brasília, Brasilia DF, Brazil
| | - Susana N. Marcucci Poltri
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
45
|
Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C, Simon PW, Baranski R. Diversity, genetic mapping, and signatures of domestication in the carrot ( Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2013; 33:625-637. [PMID: 24532979 PMCID: PMC3918115 DOI: 10.1007/s11032-013-9979-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/18/2013] [Indexed: 05/25/2023]
Abstract
Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding.
Collapse
Affiliation(s)
- Dariusz Grzebelus
- Insitute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Massimo Iorizzo
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706 USA
| | - Douglas Senalik
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706 USA
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706 USA
| | - Shelby Ellison
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706 USA
| | - Pablo Cavagnaro
- CONICET and INTA EEA La Consulta, CC8 La Consulta (5567), Mendoza, Argentina
| | - Alicja Macko-Podgorni
- Insitute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Kasia Heller-Uszynska
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT 2600 Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT 2600 Australia
| | - Thomas Nothnagel
- Institute for Breeding Research on Horticultural and Fruit Crops, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Charlotte Allender
- Warwick Crop Centre, University of Warwick, Wellesbourne, Warwick, CV35 9EF UK
| | - Philipp W. Simon
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706 USA
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706 USA
| | - Rafal Baranski
- Insitute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| |
Collapse
|
46
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
47
|
Freeman JS, Potts BM, Downes GM, Pilbeam D, Thavamanikumar S, Vaillancourt RE. Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. THE NEW PHYTOLOGIST 2013; 198:1121-1134. [PMID: 23517065 DOI: 10.1111/nph.12237] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/14/2013] [Indexed: 05/05/2023]
Abstract
· Eucalypts are one of the most planted tree genera worldwide, and there is increasing interest in marker-assisted selection for tree improvement. Implementation of marker-assisted selection requires a knowledge of the stability of quantitative trait loci (QTLs). This study aims to investigate the stability of QTLs for wood properties and growth across contrasting sites and multiple pedigrees of Eucalyptus globulus. · Saturated linkage maps were constructed using 663 genotypes from four separate families, grown at three widely separated sites, and were employed to construct a consensus map. This map was used for QTL analysis of growth, wood density and wood chemical traits, including pulp yield. · Ninety-eight QTLs were identified across families and sites: 87 for wood properties and 11 for growth. These QTLs mapped to 38 discrete regions, some of which co-located with candidate genes. Although 16% of QTLs were verified across different families, 24% of wood property QTLs and 38% of growth QTLs exhibited significant genotype-by-environment interaction. · This study provides the most detailed assessment of the effect of environment and pedigree on QTL detection in the genus. Despite markedly different environments and pedigrees, many QTLs were stable, providing promising targets for the application of marker-assisted selection.
Collapse
Affiliation(s)
- Jules S Freeman
- School of Plant Science, National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
- Co-operative Research Centre for Forestry, Private Bag 12, Hobart, Tas., 7001, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore, Qld, 4558, Australia
| | - Brad M Potts
- School of Plant Science, National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
- Co-operative Research Centre for Forestry, Private Bag 12, Hobart, Tas., 7001, Australia
| | - Geoffrey M Downes
- Co-operative Research Centre for Forestry, Private Bag 12, Hobart, Tas., 7001, Australia
- CSIRO Sustainable Ecosystems, Private Bag 12, Hobart, Tas., 7001, Australia
- Forest Quality Pty. Ltd, PO Box 293, Huonville, Tas., 7109, Australia
| | - David Pilbeam
- Southern Tree Breeding Association Inc., 38 Helen Street, PO Box 1811, Mount Gambier, SA, 5290, Australia
| | - Saravanan Thavamanikumar
- Co-operative Research Centre for Forestry, Private Bag 12, Hobart, Tas., 7001, Australia
- Department of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic., 3363, Australia
- CSIRO Plant Industry, GPO Box 1600, Acton, ACT, 2601, Australia
| | - René E Vaillancourt
- School of Plant Science, National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
- Co-operative Research Centre for Forestry, Private Bag 12, Hobart, Tas., 7001, Australia
| |
Collapse
|
48
|
Salazar MM, Nascimento LC, Camargo ELO, Gonçalves DC, Lepikson Neto J, Marques WL, Teixeira PJPL, Mieczkowski P, Mondego JMC, Carazzolle MF, Deckmann AC, Pereira GAG. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species. BMC Genomics 2013; 14:201. [PMID: 23521840 PMCID: PMC3618336 DOI: 10.1186/1471-2164-14-201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/08/2013] [Indexed: 12/02/2022] Open
Abstract
Background Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or secondary xylem, results from cambium vascular differentiation and is mostly composed of cellulose, lignin and hemicelluloses. In this study, the xylem transcriptomes of the three Eucalyptus species were investigated in order to provide insights on the particularities presented by each of these species. Results Data analysis showed that (1) most Eucalyptus genes are expressed in xylem; (2) most genes expressed in species-specific way constitutes genes with unknown functions and are interesting targets for future studies; (3) relevant differences were observed in the phenylpropanoid pathway: E. grandis xylem presents higher expression of genes involved in lignin formation whereas E. urophylla seems to deviates the pathway towards flavonoid formation; (4) stress-related genes are considerably more expressed in E. urophylla, suggesting that these genes may contribute to its robustness. Conclusions The comparison of these three transcriptomes indicates the molecular signatures underlying some of their distinct wood characteristics. This information may contribute to the understanding of xylogenesis, thus increasing the potential of genetic engineering approaches aiming at the improvement of Eucalyptus forest plantations productivity.
Collapse
Affiliation(s)
- Marcela Mendes Salazar
- Laboratório de Genômica e Expressão, Departamento de Genética Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo CEP: 13083-970, Campinas, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Woodhams M, Steane DA, Jones RC, Nicolle D, Moulton V, Holland BR. Novel Distances for Dollo Data. Syst Biol 2012; 62:62-77. [DOI: 10.1093/sysbio/sys071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michael Woodhams
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Dorothy A. Steane
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Rebecca C. Jones
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Dean Nicolle
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vincent Moulton
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Barbara R. Holland
- School of Mathematics and Physics; 2 CRC for Forestry; 3 School of Plant Science, University of Tasmania, Private Bag 55, Hobart 7001, Australia; 4 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; 5 Currency Creek Arboretum, P.O. Box 808, Melrose Park, South Australia 5039, Australia; 6 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
50
|
Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS One 2012; 7:e44684. [PMID: 22984541 PMCID: PMC3439404 DOI: 10.1371/journal.pone.0044684] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.
Collapse
|