1
|
Kamdar JH, Jasani MD, Chandrashekar AB, Janila P, Pandey MK, Georrge JJ, Varshney RK, Bera SK. Does improved oleic acid content due to marker-assisted introgression of ahFAD2 mutant alleles in peanuts alter its mineral and vitamin composition? FRONTIERS IN PLANT SCIENCE 2022; 13:942617. [PMID: 35968125 PMCID: PMC9372547 DOI: 10.3389/fpls.2022.942617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Peanuts (Arachis hypogaea L.) with high oleic acid content have extended shelf life and several health benefits. Oleic, linoleic, and palmitic acid contents in peanuts are regulated by ahFAD2A and ahFAD2B mutant alleles. In the present study, ahFAD2A and ahFAD2B mutant alleles from SunOleic 95R were introgressed into two popular peanut cultivars, GG-7 and TKG19A, followed by markers-assisted selection (MAS) and backcrossing (MABC). A total of 22 MAS and three MABC derived lines were developed with increased oleic acid (78-80%) compared to those of GG 7 (40%) and TKG 19A (50%). Peanut kernel mineral and vitamin composition remained unchanged, while potassium content was altered in high oleic ingression lines. Two introgression lines, HOMS Nos. 37 and 113 had over 10% higher pooled pod yield than respective best check varieties. More than 70% recurrent parent genome recovery was observed in HOMS-37 and HOMS-113 through recombination breeding. However, the absence of recombination in the vicinity of the target locus resulted in its precise introgression along with ample background genome recovery. Selected introgression lines could be released for commercial cultivation based on potential pod yield and oleic acid content.
Collapse
Affiliation(s)
- Jignesh H. Kamdar
- ICAR-Directorate of Groundnut Research, Junagadh, India
- Department of Microbiology, RK University, Rajkot, India
| | | | | | - Pasupulati Janila
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
| | - Manish K. Pandey
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
| | - John J. Georrge
- Christ College, Rajkot, India
- Department of Bioinformatics, University of North Bengal, Siliguri, India
| | - Rajeev K. Varshney
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
2
|
Tang X, Chen S, Yu H, Zheng X, Zhang F, Deng X, Xu Q. Development of a gRNA-tRNA array of CRISPR/Cas9 in combination with grafting technique to improve gene-editing efficiency of sweet orange. PLANT CELL REPORTS 2021; 40:2453-2456. [PMID: 34554293 DOI: 10.1007/s00299-021-02781-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Here, we developed a reliable protocol for the fast and efficient gene-edited Anliu sweet orange plants production. The application of in vitro shoot grafting technology significantly reduced the growth cycle of transgenic seedlings, and the survival rate of cleft grafting was more than 90%. In addition, the mutation efficiency of the grafted geneedited sweet orange was significantly improved by short-term heat stress treatments. Thus, the combination strategy of grafting and heat stress treatments provided a reference for the fast and efficient multiplex gene editing of sweet orange.
Collapse
Affiliation(s)
- Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shulin Chen
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huiwen Yu
- Key Laboratory of Landscape Plants With Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PLoS One 2021; 16:e0254908. [PMID: 34297757 PMCID: PMC8301646 DOI: 10.1371/journal.pone.0254908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 01/11/2023] Open
Abstract
Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.
Collapse
|
4
|
Tu Y, He B, Gao S, Guo D, Jia X, Dong X, Guo M. CtACO1 Overexpression Resulted in the Alteration of the Flavonoids Profile of Safflower. Molecules 2019; 24:molecules24061128. [PMID: 30901924 PMCID: PMC6471848 DOI: 10.3390/molecules24061128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Flavonoids with various structures play a vital role in plant acclimatization to varying environments as well as in plant growth, development, and reproduction. Exogenous applications of ethylene and 1-aminocyclopropane carboxylic acid (ACC), could affect the accumulation of flavonoids. Very few attempts have been made to investigate the effect of 1-aminocyclopropane carboxylic acid oxidase (ACO), a unique enzyme that catalyzes ACC to ethylene, on genes and metabolites in the flavonoid biosynthetic pathway. In this study, two ACOs in safflower (CtACOs) were cloned, and then transgenic safflower with overexpressed CtACO1 was generated through the Agrobacterium-mediated floral dipping method. Results: CtACO1 and CtACO2 were both characterized by the 2-oxoglutarate binding domain RxS and the ferrous iron binding site HxDxnH as ACOs from other plants. However, the transcript levels of CtACO1 in flowers at stages I, II, III, and IV were all higher than those of CtACO2. At the cellular level, by using electroporation transformation, CtACO1 was found to be localized at the cytomembrane in onion epidermal cells. CtACO1 overexpression had varying effects on genes involved in the ethylene and flavonoid biosynthetic pathways. The metabolites analysis showed that CtACO1 overexpression lines had a higher accumulation of quercetin and its glycosylated derivatives (quercetin 3-β-d-glucoside and rutin). In contrast, the accumulation of quinochalcones (hydroxysafflor yellow A and carthamin), kaempferol glycosylated derivatives (kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-d-glucoside), apigenin, and luteolin in CtACO1 overexpression lines were decreased. Conclusion: This study confirmed the feasibility of applying the floral dipping method to safflower and showed a novel regulatory effect of CtACO1 in the flavonoid biosynthetic pathway. It provides hypothetical and practical groundwork for further research on regulating the overall metabolic flux of flavonoids in safflower, particularly hydroxysafflor yellow A and other quinochalcones, by using appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Yanhua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Songyan Gao
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Dong
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Wood CC, Okada S, Taylor MC, Menon A, Mathew A, Cullerne D, Stephen SJ, Allen RS, Zhou X, Liu Q, Oakeshott JG, Singh SP, Green AG. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1788-1796. [PMID: 29509999 PMCID: PMC6131418 DOI: 10.1111/pbi.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 05/18/2023]
Abstract
Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry.
Collapse
Affiliation(s)
| | | | | | | | - Anu Mathew
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | | | | - Qing Liu
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | |
Collapse
|
6
|
Cai J, Wen R, Li W, Wang X, Tian H, Yi S, Zhang L, Li X, Jiang C, Li H. Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) stimulates hair growth and wound healing in mice. BMC Biotechnol 2018; 18:51. [PMID: 30157831 PMCID: PMC6114888 DOI: 10.1186/s12896-018-0433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2017] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Background Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing. Results The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 μg/μl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed β-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 μg/μl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing. Conclusions The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating β-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application. Electronic supplementary material The online version of this article (10.1186/s12896-018-0433-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingbo Cai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ruicheng Wen
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wenqing Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiuran Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Haishan Tian
- Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shanyong Yi
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Linbo Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiaokun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chao Jiang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China. .,Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
7
|
Giraldo O, Garcia A, Corcho O. A guideline for reporting experimental protocols in life sciences. PeerJ 2018; 6:e4795. [PMID: 29868256 PMCID: PMC5978404 DOI: 10.7717/peerj.4795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2017] [Accepted: 04/29/2018] [Indexed: 01/01/2023] Open
Abstract
Experimental protocols are key when planning, performing and publishing research in many disciplines, especially in relation to the reporting of materials and methods. However, they vary in their content, structure and associated data elements. This article presents a guideline for describing key content for reporting experimental protocols in the domain of life sciences, together with the methodology followed in order to develop such guideline. As part of our work, we propose a checklist that contains 17 data elements that we consider fundamental to facilitate the execution of the protocol. These data elements are formally described in the SMART Protocols ontology. By providing guidance for the key content to be reported, we aim (1) to make it easier for authors to report experimental protocols with necessary and sufficient information that allow others to reproduce an experiment, (2) to promote consistency across laboratories by delivering an adaptable set of data elements, and (3) to make it easier for reviewers and editors to measure the quality of submitted manuscripts against an established criteria. Our checklist focuses on the content, what should be included. Rather than advocating a specific format for protocols in life sciences, the checklist includes a full description of the key data elements that facilitate the execution of the protocol.
Collapse
Affiliation(s)
- Olga Giraldo
- Ontology Engineering Group, Campus de Montegancedo, Boadilla del Monte, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alexander Garcia
- Ontology Engineering Group, Campus de Montegancedo, Boadilla del Monte, Universidad Politécnica de Madrid, Madrid, Spain
- Technische Universität Graz, Graz, Austria
| | - Oscar Corcho
- Ontology Engineering Group, Campus de Montegancedo, Boadilla del Monte, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant based omega-3 fatty acids. Transgenic Res 2018; 27:253-263. [PMID: 29752697 DOI: 10.1007/s11248-018-0070-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2016] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
Alpha-linolenic acid (ALA) deficiency and a skewed n6:n3 fatty acid ratio in the diet is a major explanation for the prevalence of cardiovascular diseases and inflammatory/autoimmune diseases. There is mounting evidence of the health benefits associated with omega-3 long chain polyunsaturated fatty acids (LC PUFA's). Although present in abundance in fish, a number of factors limit our consumption of fish based omega-3 PUFA's. To name a few, overexploitation of wild fish stocks has reduced their sustainability due to increased demand of aquaculture for fish oil and meal; the pollution of marine food webs has raised concerns over the ingestion of toxic substances such as heavy metals and dioxins; vegetarians do not consider fish-based sources for supplemental nutrition. Thus alternative sources are being sought and one approach to the sustainable supply of LC-PUFAs is the metabolic engineering of transgenic plants with the capacity to synthesize n3 LC-PUFAs. The present investigation was carried out with the goal of developing transgenic safflower capable of producing pharmaceutically important alpha-linolenic acid (ALA, C18:3, n3). This crop was selected as the seeds accumulate ~ 78% of the total fatty acids as linoleic acid (LA, C18:2, n6), the immediate precursor of ALA. In the present work, ALA production was achieved successfully in safflower seeds by transforming safflower hypocotyls with Arabidopsis specific delta 15 desaturase (FAD3) driven by truncated seed specific promoter. Transgenic safflower fortified with ALA is not only potentially valuable nutritional superior novel oil but also has reduced ratio of LA to ALA which is required for good health.
Collapse
|
9
|
Belide S, Vanhercke T, Petrie JR, Singh SP. Robust genetic transformation of sorghum ( Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. PLANT METHODS 2017; 13:109. [PMID: 29234458 PMCID: PMC5723044 DOI: 10.1186/s13007-017-0260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/25/2017] [Accepted: 11/28/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. RESULTS We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt-II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. CONCLUSIONS This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
Collapse
|
10
|
Parameters influencing Agrobacterium-mediated transformation system in safflower genotypes AKS-207 and PKV Pink. 3 Biotech 2016; 6:181. [PMID: 28330253 PMCID: PMC5001957 DOI: 10.1007/s13205-016-0497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2016] [Accepted: 08/16/2016] [Indexed: 10/30/2022] Open
Abstract
Shoot regeneration in safflower (Carthamus tinctorius 'AKS 207' and 'PKV Pink') genetically transformed using Agrobacterium was used for assessing various constraints to the efficiency of transformation including infection period, virulence induction medium, co-cultivation period, bacterial titre, selection regime, and the natural phenolic compound acetosyringone. Transformation frequency was promising with 8-10-day-old cotyledonary leaf explants. Therefore, explants of that age cultured on Agrobacterium minimal medium (AB) containing 100 µM acetosyringone were infected with Agrobacterium (cell titre 0.5 OD600nm) for 15 min followed by 48 h of co-cultivation on kanamycin-enriched medium (50 mg/L). Transformation of the shoots was confirmed using β-glucuronidase (GUS) histochemical assay and polymerase chain reaction (PCR). With the transformation protocol thus optimized, the transformation frequency as determined using GUS assays was 54.0 % for AKS 207 and 47.6 % for PKV Pink. The corresponding figures using PCR were 27.0 and 33.3 %. The transformed shoots required 10-14 weeks of culture initiation but produced very few roots.
Collapse
|
11
|
Huang J, Yang J, Guan L, Yi S, Du L, Tian H, Guo Y, Zhai F, Lu Z, Li H, Li X, Jiang C. Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds. Protein Expr Purif 2015; 138:7-12. [PMID: 26384708 DOI: 10.1016/j.pep.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 10 (FGF10) is a member of the FGF superfamily. It exhibits diverse biological functions, and is extensively used for fundamental research and clinical applications involving hair growth, tissue repair, and burn wounds. Oil bodies, obtained from oil seeds, have been exploited for a variety of biotechnology applications. The use of oil bodies reduces purification steps and costs associated with the production of heterogonous proteins. Here, recombinant human FGF10 (rhFGF10) was expressed in safflower (Carthamus tinctorius L.) seeds using oilbody-oleosin technology. A plant expression vector, pOTBar-oleosin-rhFGF10, was constructed and introduced into safflower using Agrobacterium tumefaciens transformation, and mature safflower plants were obtained by grafting. Oleosin-rhFGF10 was successfully transformed and expressed in safflower seeds and inherited to the T3 generation. Moreover, MTT assays demonstrated that oil bodies expressed oleosin-FGF10 had a dose-dependent effect on cellular proliferation. In conclusion, this may provide a method of producing oleosin-rhFGF10, and help us meet the increasing pharmacological demands for the protein.
Collapse
Affiliation(s)
- Jian Huang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shanyong Yi
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Linna Du
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
| | - Yongxin Guo
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Feng Zhai
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhen Lu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaokun Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| | - Chao Jiang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
12
|
Tiwari V, Chaturvedi AK, Mishra A, Jha B. An efficient method of agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting. Appl Biochem Biotechnol 2014; 175:436-53. [PMID: 25308617 DOI: 10.1007/s12010-014-1286-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023]
Abstract
Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and L-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L(-1), respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Road, Bhavnagar, 364002, Gujarat, India
| | | | | | | |
Collapse
|
13
|
Fan LJ, Guo ML. Regeneration of Carthamus tinctorius from Jimsar. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022] Open
|
14
|
Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. PROTOPLASMA 2014; 251:591-601. [PMID: 24150424 DOI: 10.1007/s00709-013-0558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 05/10/2023]
Abstract
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
Collapse
Affiliation(s)
- Balusamy Jaganath
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 2014; 41:3257-69. [PMID: 24488319 DOI: 10.1007/s11033-014-3188-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022]
Abstract
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l(-1) was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l(-1) in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25%. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.
Collapse
|
16
|
|