1
|
Ringseis R, Wächter S, Cohrs I, Eder K, Grünberg W. Effect of dietary phosphorus deprivation during the dry period on the liver transcriptome of high-yielding periparturient dairy cows. J Dairy Sci 2024; 107:5178-5189. [PMID: 38395399 DOI: 10.3168/jds.2023-24099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Although dietary phosphorus (P) deprivation extending from the dry period into early lactation impairs health and productivity of cows, restricting dietary P supply during the dry period not only appears to be innocuous but rather effectively mitigates hypocalcemia during the first wk of lactation. To investigate possible negative metabolic effects of P deprivation during the dry period, the present study tested the hypothesis that restricted dietary P supply during the dry period alters the liver transcriptome of dairy cows during the periparturient period. Thirty late-pregnant multiparous Holstein-Friesian dairy cows entering their second, third, or fourth lactation were assigned to either a dry cow ration with low (LP, 0.16% P in DM) or adequate P content (AP, 0.35% in DM) during the last 4 wk of the dry period (n = 15/group). Liver transcriptomics, which was carried out in a subset of 5 second-parity cows of each group (n = 5), and determination of selected hormones and metabolites in blood of all cows, was performed ∼1 wk before calving and on d 3 postpartum. Liver tissue specimens and blood samples were obtained by a micro-invasive biopsy technique from the right tenth intercostal space and puncture of a jugular vein, respectively. One hundred seventy-five hepatic transcripts were expressed differentially between LP versus AP cows in late pregnancy, and 165 transcripts differed between LP versus AP cows in early lactation (fold change >1.3 and <-1.3, P < 0.05). In late pregnancy, the enriched biological processes of the upregulated and the downregulated transcripts were mainly related to immune processes and signal transduction (P < 0.05), respectively. In early lactation, the enriched biological processes of the upregulated and the downregulated transcripts were involved in mineral transport and biotransformation (P < 0.05), respectively. The plasma concentrations of the hormones and acute-phase proteins (progesterone, insulin-like growth factor 1, serum amyloid α, haptoglobin, and 17β-estradiol) determined were not affected by P supply. These results suggest that P deprivation during the dry period moderately affects the liver transcriptome of cows in late pregnancy and early lactation, and causes no effects on important plasma hormones and acute-phase proteins indicating no obvious impairment of health or metabolism of the cows.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sophia Wächter
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany
| | - Imke Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany; Clinic for Ruminants and Herd Health Management, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Walter Grünberg
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany; Clinic for Ruminants and Herd Health Management, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Prezotto LD, Keane JA, Cupp AS, Thorson JF. Fibroblast Growth Factor 21 Has a Diverse Role in Energetic and Reproductive Physiological Functions of Female Beef Cattle. Animals (Basel) 2023; 13:3185. [PMID: 37893910 PMCID: PMC10603626 DOI: 10.3390/ani13203185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.
Collapse
Affiliation(s)
- Ligia D. Prezotto
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jessica A. Keane
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NE 68583-0908, USA; (L.D.P.); (J.A.K.); (A.S.C.)
| | - Jennifer F. Thorson
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933-0166, USA
| |
Collapse
|
3
|
Huang Y, Kong Y, Shen B, Li B, Loor JJ, Tan P, Wei B, Mei L, Zhang Z, Zhao C, Zhu X, Qi S, Wang J. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia. J Dairy Sci 2023; 106:3692-3705. [PMID: 37028962 DOI: 10.3168/jds.2022-22812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
5
|
Fehlberg LK, Guadagnin AR, Thomas BL, Ballou M, Loor JJ, Sugimoto Y, Shinzato I, Cardoso FC. Feeding rumen-protected lysine altered immune and metabolic biomarkers in dairy cows during the transition period. J Dairy Sci 2023; 106:2989-3007. [PMID: 36797190 DOI: 10.3168/jds.2022-22349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/13/2022] [Indexed: 02/16/2023]
Abstract
This experiment was conducted to determine the effects of feeding rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America Inc.) from -26 ± 4.6 d prepartum (0.54% RPL of dietary dry matter intake) to 28 d postpartum (0.39% RPL of dietary dry matter intake) on immunometabolic status and liver composition in dairy cows. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 4 dietary treatments in a randomized, complete block design with a 2 × 2 factorial arrangement of treatments. Treatments prepartum consisted of total mixed ration top dressed with RPL (PRE-L) or without RPL (PRE-C), and postpartum treatments consisted of total mixed ration top dressed PRE-L prepartum and postpartum, PRE-L prepartum and PRE-C postpartum, PRE-C prepartum and PRE-L postpartum, and PRE-C prepartum and postpartum in 300 g of molasses. Blood samples were taken on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, 14 ± 0.9, and 28 ± 0.5 d relative to calving. Whole blood samples were taken on -14 ± 0.5, -7 ± 0.5, 7 ± 0.9, and 14 ± 0.9 d relative to calving for oxidative burst and phagocytic capacity of monocytes and neutrophils. Liver samples were collected via a biopsy on -12 ± 4.95 and 13 ± 2.62 d relative to calving and analyzed for liver composition (triacylglyceride and carnitine concentrations), mRNA expression of hepatic genes, and protein abundance. Protein abundance was calculated by normalizing intensity bands for a specific protein with glyceraldehyde-3-phosphate dehydrogenase. Concentrations of haptoglobin and glutathione peroxidase activity in plasma were lower at d 0 for cows in PRE-L (102 µg/mL and 339 nmol/min per mL, respectively) compared with cows in PRE-C (165 µg/mL and 405 nmol/min per mL, respectively). Oxidative burst capacity in monocytes tended to be greater on d 7 postpartum for cows in PRE-L (65.6%) than cows in PRE-C (57.5%). Additionally, feeding RPL altered the mRNA expression in liver tissue prepartum [decreased INSR (insulin receptor), CPT1A (carnitine palmitoyltransferase 1A), and IL1B (interleukin 1 β)] and postpartum [increased IL8 (interleukin 8), EHMT2 (euchromatic histone lysine methyltransferase 2), TSPO (translocator protein), and SLC3A2 (solute carrier family 3 member 2); and decreased SLC7A1 (solute carrier family 7 member 1), SOD1 (superoxide dismutase 1), and SAA3 (serum amyloid A 3)] compared with cows not consuming RPL]. Additionally, cows in the PRE-C prepartum and PRE-L postpartum treatment tended to have greater protein abundance of mTOR postpartum compared with the PRE-C prepartum and postpartum treatment. Protein abundance of SLC7A7 (solute carrier family 7 member 7) pre- and postpartum tended to be greater and BBOX1 (gamma-butyrobetaine dioxygenase 1) tended to be less when RPL was consumed prepartum. In conclusion, cows that consumed RPL during the transition period had molecular changes related to liver composition, enhanced liver function indicated by greater total protein and albumin concentrations in plasma, and improved immune status indicated by decreased haptoglobin, glutathione peroxidase activity, and immune related mRNA expression.
Collapse
Affiliation(s)
- L K Fehlberg
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A R Guadagnin
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - B L Thomas
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Ballou
- Department of Animal Science and Food Science, Texas Tech University, Lubbock 79409
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - Y Sugimoto
- Ajinomoto Co. Inc., Tokyo 104-8315, Japan
| | - I Shinzato
- Ajinomoto Co. Inc., Tokyo 104-8315, Japan
| | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
6
|
Sharma B, Yadav DK. L-Carnitine and Chronic Kidney Disease: A Comprehensive Review on Nutrition and Health Perspectives. J Pers Med 2023; 13:298. [PMID: 36836532 PMCID: PMC9960140 DOI: 10.3390/jpm13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Progressive segmental glomerulosclerosis is acknowledged as a characteristic of Chronic Kidney Disease (CKD). It is a major health issue that exponentially reduces health and economy and also causes serious morbidity and mortality across the globe. This review is aimed at comprehending the health perspectives of L-Carnitine (LC) as an adjuvant regimen for alleviating CKD and its associated complications. The data were gathered from different online databases such as Science Direct, Google Scholar, ACS publication, PubMed, Springer, etc., using keywords such as CKD/Kidney disease, current epidemiology and its prevalence, LC supplementations, sources of LC, anti-oxidant and anti-inflammatory potential of LC and its supplementation for mimicking the CKD and its associated problem, etc. Various items of literature concerning CKD were gathered and screened by experts based on their inclusion and exclusion criteria. The findings suggest that, among the different comorbidities such as oxidative stress and inflammatory stress, erythropoietin-resistant anemia, intradialytic hypotension, muscle weakness, myalgia, etc., are considered as the most significant onset symptoms in CKD or hemodialysis patients. LC or creatine supplementation provides an effective adjuvant or therapeutic regimen that significantly reduces oxidative and inflammatory stress and erythropoietin-resistant anemia and evades comorbidities such as tiredness, impaired cognition, muscle weakness, myalgia, and muscle wasting. However, no significant changes were found in biochemical alteration such as creatinine, uric acid, urea, etc., after creatine supplementation in a patient with renal dysfunction. The expert-recommended dose of LC or creatine to a patient is approached for better outcomes of LC as a nutritional therapy regimen for CKD-associated complications. Hence, it can be suggested that LC provides an effective nutritional therapy to ameliorate impaired biochemicals and kidney function and to treat CKD and its associated complications.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, India
| |
Collapse
|
7
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
8
|
Hassan FU, Nadeem A, Javed M, Saif-ur-Rehman M, Shahzad MA, Azhar J, Shokrollahi B. Nutrigenomic Interventions to Address Metabolic Stress and Related Disorders in Transition Cows. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2295017. [PMID: 35726316 PMCID: PMC9206560 DOI: 10.1155/2022/2295017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
For dairy cattle, the period involving a shift from late pregnancy to early lactation termed transition or periparturient is an excruciating phase. Health-related disorders are likely to happen in this time frame. Timely postpartum and metabolic adjustments to this new physical state demands correct management strategies to fulfill the cow's needs for a successful transition to this phase. Among the management strategies, one of the most researched methods for managing transition-related stress is nutritional supplementation. Dietary components directly or indirectly affect the expression of various genes that are believed to be involved in various stress-related responses during this phase. Nutrigenomics, an interdisciplinary approach that combines nutritional science with omics technologies, opens new avenues for studying the genome's complicated interactions with food. This revolutionary technique emphasizes the importance of food-gene interactions on various physiological and metabolic mechanisms. In animal sciences, nutrigenomics aims to promote the welfare of livestock animals and enhance their commercially important qualities through nutritional interventions. To this end, an increasing volume of research shows that nutritional supplementation can be effectively used to manage the metabolic stress dairy cows undergo during the transition period. These nutritional supplements, including polyunsaturated fatty acids, vitamins, dietary amino acids, and phytochemicals, have been shown to modulate energy homeostasis through different pathways, leading to addressing metabolic issues in transition cows.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Maryam Javed
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Jahanzaib Azhar
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
9
|
Kononov SU, Meyer J, Frahm J, Kersten S, Kluess J, Bühler S, Wegerich A, Rehage J, Meyer U, Huber K, Dänicke S. Dietary L-Carnitine Affects Leukocyte Count and Function in Dairy Cows Around Parturition. Front Immunol 2022; 13:784046. [PMID: 35370999 PMCID: PMC8965741 DOI: 10.3389/fimmu.2022.784046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for β-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.
Collapse
Affiliation(s)
- Susanne Ursula Kononov
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany.,Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jennifer Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Anja Wegerich
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Korinna Huber
- Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
10
|
Eder K, Gessner DK, Ringseis R. Fibroblast growth factor 21 in dairy cows: current knowledge and potential relevance. J Anim Sci Biotechnol 2021; 12:97. [PMID: 34517929 PMCID: PMC8439079 DOI: 10.1186/s40104-021-00621-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified as an important regulator of carbohydrate and lipid metabolism, which plays an important role for metabolic regulation, particularly under conditions of energy deprivation or stress conditions. Dairy cows are subjected to a negative energy balance and various kinds of stress particularly during the periparturient phase and during early lactation. It has been shown that the plasma concentration of FGF21 in dairy cows is dramatically increased at parturition and remains high during the first weeks of lactation. This finding suggests that FGF21 might exert similar functions in dairy cows than in other species, such as mice or humans. However, the role of FGF21 in dairy cows has been less investigated so far. Following a brief summary of the previous findings about the function of FGF21 in humans and mice, the present review aims to present the current state of knowledge about the role of FGF21 in dairy cows. The first part of the review deals with the tissue localization of FGF21 and with conditions leading to an upregulation of FGF21 expression in the liver of dairy cows. In the second part, the influence of nutrition on FGF21 expression and the role of FGF21 for metabolic diseases in dairy cows is addressed. In the third part, findings of exogenous FGF21 application on metabolism in dairy cows are reported. Finally, the potential relevance of FGF21 in dairy cows is discussed. It is concluded that FGF21 might be of great importance for metabolic adaptation to negative energy balance and stress conditions in dairy cows. However, further studies are needed for a better understanding of the functions of FGF21 in dairy cows.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
11
|
Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021; 22:280. [PMID: 33865335 PMCID: PMC8053294 DOI: 10.1186/s12864-021-07538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. RESULTS Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met. CONCLUSIONS Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Abdulrahman Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Effects of Dietary L-Carnitine Supplementation on Platelets and Erythrogram of Dairy Cows with Special Emphasis on Parturition. DAIRY 2020. [DOI: 10.3390/dairy2010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid utilization for generating adenosine triphosphate (ATP). As it might be insufficient around calving due to increased need, L-carnitine supplementation is frequently recommended. Thus, the present study addressed the interplay between the red hemogram, platelets, oxidative stress indices, and L-carnitine supplementation of dairy cows around calving. German Holstein cows were assigned to a control (n = 30) and an L-carnitine group (n = 29, 25 g of rumen-protected L-carnitine per cow and per day), and blood samples were taken from day 42 ante partum (ap) until day 110 postpartum (pp), with a higher sampling frequency during the first three days pp. The time courses of the erythrogram parameters reflected the physiological adaptations to the oxygen need without being influenced by L-carnitine supplementation. Erythrocytic antioxidative enzymatic defence paralleled the relative development of polycythemia ap, while non-enzymatic total plasma antioxidative capacity continuously increased pp. In contrast to erythrocytes, the platelet counts of the L-carnitine supplemented cows varied at significantly higher levels. This can be interpreted as a result of a membrane-stabilizing effect of L-carnitine.
Collapse
|
13
|
Guo C, Xue Y, Yin Y, Sun D, Xuan H, Liu J, Mao S. The effect of glycerol or rumen-protected choline chloride on rumen fermentation and blood metabolome in pregnant ewes suffering from negative energy balance. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Effects of a Dietary L-Carnitine Supplementation on Performance, Energy Metabolism and Recovery from Calving in Dairy Cows. Animals (Basel) 2020; 10:ani10020342. [PMID: 32098123 PMCID: PMC7070952 DOI: 10.3390/ani10020342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Dairy cows develop metabolic diseases especially in the transition period due to high energy requirements for the process of calving, beginning milk production and, simultaneously, restricted feed intake capacity. L-carnitine is endogenously synthesised as an obligatory, quaternary amine for the initial step of ß-oxidation, but with the onset of lactation it is also excreted with milk, whereby its availability for other metabolic pathways might be limited. Supplemental L-carnitine might be able to fill in this apparent gap and to enhance the efficiency of ß-oxidation, whereby the magnitude of negative energy balance would be decreased. The present experiment mainly focused on the energy-consuming process of calving itself and on the energy metabolism during the first weeks of lactation. Abstract Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.
Collapse
|
15
|
Basoglu A, Baspinar N, Tenori L, Licari C, Gulersoy E. Nuclear magnetic resonance (NMR)-based metabolome profile evaluation in dairy cows with and without displaced abomasum. Vet Q 2020; 40:1-15. [PMID: 31858882 PMCID: PMC6968509 DOI: 10.1080/01652176.2019.1707907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Displaced abomasum (DA) is a condition of dairy cows that severely impacts animal welfare and causes huge economic losses. Objective To assess the metabolic status of the disease using metabolomics in serum, urine and liver samples aimed at both water soluble and lipid soluble fractions. Methods Fifty Holstein multiparous cows with DA (42 left, 8 right) and 20 clinically healthy Holstein multiparous cows were used. Left DA was associated with concomitant ketosis in 19 animals and right in two. NMR-based metabolomics approach and hematological and biochemical analyses were performed. Statistical analysis was carried out on 1H-NMR data after they have been normalized using PQN method. Results Contrary to generated PCA score plots the OPLS-supervised method revealed differences between healthy animals and diseased ones based on serum water-soluble samples. While water and lipid soluble metabolites decreased in serum samples, fatty acid fractions and cholesterol were increased in liver samples in DA affected cows. The metabolomic and chemical profiles clearly revealed that cows with DA (especially with LDA) were at risk of ketosis and fatty liver. Serum hippuric acid concentration was significantly higher in healthy cows in comparison with LDA, whereas serum glycine concentration was reported higher for healthy when compared to RDA affected animals. Conclusion A biochemical network and pathway mapping revealed ‘valine, leucine and isoleucine biosynthesis’ and ‘phenylalanine, tyrosine and tryptophan biosynthesis’ as the most probable altered metabolic pathway in DA condition. Serum was advocated as the optimal biological matrix for the 1H-NMR analysis.
Collapse
Affiliation(s)
- Abdullah Basoglu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Selcuklu, Konya, Turkey
| | - Nuri Baspinar
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Selcuklu, Konya, Turkey
| | - Leonardo Tenori
- Interuniversitary Consortium for Magnetic Resonance of Metalloproteins (C.I.R.M.M.P.), Sesto Fiorentino (Florence), Italy
| | - Cristina Licari
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino (FI), Italy
| | - Erdem Gulersoy
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Selcuklu, Konya, Turkey
| |
Collapse
|
16
|
Zhu Y, Liu G, Du X, Shi Z, Jin M, Sha X, Li X, Wang Z, Li X. Expression patterns of hepatic genes involved in lipid metabolism in cows with subclinical or clinical ketosis. J Dairy Sci 2019; 102:1725-1735. [DOI: 10.3168/jds.2018-14965] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/29/2018] [Indexed: 12/29/2022]
|
17
|
Wang J, Zhu X, She G, Kong Y, Guo Y, Wang Z, Liu G, Zhao B. Serum hepatokines in dairy cows: periparturient variation and changes in energy-related metabolic disorders. BMC Vet Res 2018; 14:236. [PMID: 30103741 PMCID: PMC6090689 DOI: 10.1186/s12917-018-1560-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During peripartum period, dairy cows are highly susceptible to energy metabolism disorders such as fatty liver and ketosis. Angiopoietin-like protein 4 (ANGPTL4) and fibroblast growth factor 21 (FGF21), known as hepatokines, play important roles in lipid metabolism. The purposes of our study were to evaluate variations of serum ANGPTL4 and FGF21 concentrations in periparturient dairy cows and changes in these serum analyte concentrations of energy-related metabolic disorders in early lactation dairy cows. This study was divided into two experiments. Experiment I: Blood parameters were measured in healthy periparturient Holstein cows from 4 wk antepartum to 4 wk postpartum (n = 219). In this experiment, weekly blood samples were obtained from 4 wk before the expected calving date through 4 wk after calving. Experiment II: Blood parameters were measured in healthy cows (n = 30) and cows with clinical ketosis (n = 29) and fatty liver (n = 25) within the first 4 wk of lactation. In the present study, all blood samples were collected from the coccygeal vein in the early morning before feeding. RESULTS Serum ANGPTL4 and FGF21 concentrations peaked at parturition, and declined rapidly over the following 2 wk Serum ANGPTL4 and FGF21 concentrations were positively correlated with serum non-esterified fatty acids (NEFA) concentration (r = 0.856, P = 003; r = 0.848, P = 0.004, respectively). Cows with clinical ketosis and fatty liver had significantly higher serum ANGPTL4 and FGF21 concentrations than healthy cows (P < 0.01). CONCLUSION Serum ANGPTL4 and FGF21 concentrations were elevated during peripartum period, suggesting that energy balance changes that were associated with parturition contributed significantly to these effects. Although FGF21 and ANGPTL4 could play important roles in the adaptation of energy metabolism, they may be involved in the pathological processes of energy metabolism disorders of dairy cows in the peripartum period.
Collapse
Affiliation(s)
- Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,UMR 1195 Inserm and University Paris-Saclay, Kremlin-Bicêtre, France
| | - Guanghui She
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhe Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Ringseis R, Keller J, Eder K. Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review. Arch Anim Nutr 2018; 72:1-30. [PMID: 29313385 DOI: 10.1080/1745039x.2017.1421340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carnitine has long been known to play a critical role for energy metabolism. Due to this, a large number of studies have been carried out to investigate the potential of supplemental carnitine in improving performance of livestock animals including ruminants, with however largely inconsistent results. An important issue that has to be considered when using carnitine as a feed additive is that the efficacy of supplemental carnitine is probably dependent on the animal's carnitine status, which is affected by endogenous carnitine synthesis, carnitine uptake from the gastrointestinal tract and carnitine excretion. The present review aims to summarise the current knowledge of the regulation of carnitine status and carnitine homeostasis in ruminants, and comprehensively evaluate the efficacy of carnitine supplementation on performance and/or health in ruminant livestock by comparing the outcomes of studies with carnitine supplementation in dairy cattle, growing and finishing cattle and sheep. While most of the studies show that supplemental carnitine, even in ruminally unprotected form, is bioavailable in ruminants, its effect on either milk or growth performance is largely disappointing. However, supplemental carnitine appears to be a useful strategy to offer protection against ammonia toxicity caused by consumption of high levels of non-protein N or forages with high levels of soluble N both, in cattle and sheep.
Collapse
Affiliation(s)
- Robert Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Janine Keller
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Klaus Eder
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| |
Collapse
|
19
|
Zeitz JO, Weber A, Most E, Windisch W, Bolduan C, Geyer J, Romberg FJ, Koch C, Eder K. Effects of supplementing rumen-protected niacin on fiber composition and metabolism of skeletal muscle in dairy cows during early lactation. J Dairy Sci 2018; 101:8004-8020. [PMID: 29960772 DOI: 10.3168/jds.2018-14490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/13/2018] [Indexed: 01/01/2023]
Abstract
Nicotinic acid (NA) has been shown to induce muscle fiber switching toward oxidative type I fibers and a muscle metabolic phenotype that favors fatty acid (FA) utilization in growing rats, pigs, and lambs. The hypothesis of the present study was that supplementation of NA in cows during the periparturient phase also induces muscle fiber switching from type II to type I fibers in skeletal muscle and increases the capacity of the muscle to use free FA, which may help to reduce nonesterified fatty acid (NEFA) flow to the liver, liver triglyceride (TG) accumulation, and ketogenesis. Thirty multiparous Holstein dairy cows were allocated to 2 groups and fed a total mixed ration without (control group) or with ∼55 g of rumen-protected NA per cow per day (NA group) from 21 d before expected calving until 3 wk postpartum (p.p.). Blood samples were collected on d -21, -14, -7, 7, 14, 21, 35, and 63 relative to parturition for analysis of TG, NEFA, and β-hydroxybutyrate. Muscle and liver biopsies were collected on d 7 and 21 for gene expression analysis and to determine muscle fiber composition in the musculus semitendinosus, semimembranosus, and longissimus lumborum by immunohistochemistry, and liver TG concentrations. Supplementation of NA did not affect the proportions of type I (oxidative) or the type II:type I ratio in the 3 muscles considered. A slight shift from glycolytic IIx fibers toward oxidative-glycolytic fast-twitch IIa fibers was found in the semitendinosus, and a tendency in the longissimus lumborum, but not in the semimembranosus. The transcript levels of the genes encoding the muscle fiber type isoforms and involved in FA uptake and oxidation, carnitine transport, tricarboxylic acid cycle, oxidative phosphorylation, and glucose utilization were largely unaffected by NA supplementation in all 3 muscles. Supplementation of NA had no effect on plasma TG and NEFA concentrations, liver TG concentrations, and hepatic expression of genes involved in hepatic FA utilization and lipogenesis. However, it reduced plasma β-hydroxybutyrate concentrations in wk 2 and 3 p.p. by 18 and 26% and reduced hepatic gene expression of fibroblast growth factor 21, a stress hormone involved in the regulation of ketogenesis, by 74 and 56%. In conclusion, a high dosage of rumen-protected NA reduced plasma β-hydroxybutyrate concentrations in cows during early lactation, but failed to cause an alteration in muscle fiber composition and muscle metabolic phenotype.
Collapse
Affiliation(s)
- J O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.
| | - A Weber
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - E Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - W Windisch
- Chair of Animal Nutrition, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354 Freising, Germany
| | - C Bolduan
- Chair of Animal Nutrition, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354 Freising, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, University of Giessen, Schubertstraße 81 (BFS), 35392 Giessen, Germany
| | - F-J Romberg
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| |
Collapse
|
20
|
Rico J, Zang Y, Haughey N, Rius A, McFadden J. Short communication: Circulating fatty acylcarnitines are elevated in overweight periparturient dairy cows in association with sphingolipid biomarkers of insulin resistance. J Dairy Sci 2018; 101:812-819. [DOI: 10.3168/jds.2017-13171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
|
21
|
Olagaray KE, Shaffer JE, Armendariz CK, Bellamine A, Jacobs S, Titgemeyer EC, Bradford BJ. Relative bioavailability of carnitine delivered by ruminal or abomasal infusion or by encapsulation in dairy cattle. J Dairy Sci 2017; 101:2060-2071. [PMID: 29274978 DOI: 10.3168/jds.2017-13656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
Two studies were designed to evaluate the relative bioavailability of l-carnitine delivered by different methods in dairy cattle. In experiment 1, 4 Holstein heifers were used in a split-plot design to compare ruminally or abomasally infused l-carnitine. The study included 2 main-plot periods, with infusion routes allocated in a crossover design. Within main-plot periods, each of 3 subplot periods consisted of 4-d infusions separated with 4-d rest periods. Subplot treatments were infusion of 1, 3, and 6 g of l-carnitine/d in conjunction with 6 g/d of arabinogalactan given in consideration of eventual product manufacturing. Doses increased within a period to minimize carryover risk. Treatments were solubilized in 4 L of water and delivered in two 10-h infusions daily. Blood was collected before the start of infusion period and on d 4 of each infusion period to obtain baseline and treatment l-carnitine concentrations. There was a dose × route interaction and route effect for increases in plasma carnitine above baseline, with increases above baseline being greater across all dose levels when infused abomasally compared with ruminally. Results demonstrated superior relative bioavailability of l-carnitine when ruminal exposure was physically bypassed. In experiment 2, 56 lactating Holstein cows (143 ± 72 d in milk) were used in 2 cohorts in randomized complete block designs (blocked by parity and milk production) to evaluate 2 rumen-protected products compared with crystalline l-carnitine. Treatments were (1) control, (2) 3 g/d of crystalline l-carnitine (crystalline), (3) 6 g/d of crystalline, (4) 5 g/d of 40COAT (40% coating, 60% l-carnitine), (5) 10 g/d of 40COAT, (6) 7.5 g/d of 60COAT (60% coating, 40% l-carnitine), and (7) 15 g/d of 60COAT. Treatments were top-dressed to diets twice daily. Each cohort used 14-d and included a 6-d baseline measurement period with the final 2 d used for data and sample collection, and an 8-d treatment period with the final 2 d used for data and sample collection. Plasma, urine, and milk samples were analyzed for l-carnitine. Crystalline and 40COAT linearly increased plasma l-carnitine, and 60COAT tended to linearly increase plasma l-carnitine. Total excretion (milk + urine) of l-carnitine averaged 1.52 ± 0.04 g/d in controls, increased linearly with crystalline and 40COAT, and increased quadratically with 60COAT. Crystalline increased plasma l-carnitine and l-carnitine excretion more than 40COAT and 60COAT. In conclusion, preventing ruminal degradation of l-carnitine increased delivery of bioavailable carnitine to cattle, but effective ruminal protection and postruminal bioavailability is challenging.
Collapse
Affiliation(s)
- K E Olagaray
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J E Shaffer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - C K Armendariz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | | | | | - E C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
22
|
Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM. Disturbed bovine mitochondrial lipid metabolism: a review. Vet Q 2017; 37:262-273. [PMID: 28712316 DOI: 10.1080/01652176.2017.1354561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise and cannot be covered by feed intake. This review mainly focuses on the role of long chain fatty acids in disturbed energy metabolism of the bovine species. Long chain fatty acids regulate energy metabolism as ligands of peroxisome proliferator-activated receptors. Carnitine acts as a carrier of fatty acyl groups as long-chain acyl-CoA derivatives do not penetrate the mitochondrial inner membrane. There are two different types of disorders in lipid metabolism which can occur in cattle, namely the hypoglycaemic-hypoinsulinaemic and the hyperglycaemic-hyperinsulinaemic type with the latter not always associated with ketosis. There is general agreement that fatty acid β-oxidation capability is limited in the liver of (ketotic) cows. In accord, supplemental L-carnitine decreased liver lipid accumulation in periparturient Holstein cows. Of note, around parturition concurrent oxidation of fatty acids in skeletal muscle is highly activated. Also peroxisomal β-oxidation in liver of dairy cows may be part of the hepatic adaptations to a negative energy balance (NEB) to break down fatty acids. An elevated blood concentration of nonesterified fatty acids is one of the indicators of NEB in cattle among others like increased β-hydroxy butyrate concentration, and decreased concentrations of glucose, insulin, and insulin-like growth factor-I. Assuming that liver carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows, further study of the role of acyl-CoA dehydrogenases and/or riboflavin in bovine ketosis is warranted.
Collapse
Affiliation(s)
- J H Han van der Kolk
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - J J Gross
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - V Gerber
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - R M Bruckmaier
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
23
|
Zhang Y, Kallenberg C, Hyatt HW, Kavazis AN, Hood WR. Change in the Lipid Transport Capacity of the Liver and Blood during Reproduction in Rats. Front Physiol 2017; 8:517. [PMID: 28798692 PMCID: PMC5527701 DOI: 10.3389/fphys.2017.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
To support the high energetic demands of reproduction, female mammals display plasticity in many physiological processes, such as the lipid transport system. Lipids support the energy demands of females during reproduction, and energy and structural demands of the developing offspring via the placenta in utero or milk during the suckling period. We hypothesized that key proteins supporting lipid transport in reproductive females will increase during pregnancy and lactation, but drop to non-reproductive levels shortly after reproduction has ended. We compared the relative protein levels of liver-type cytosolic fatty acid transporter (L-FABPc), plasma membrane fatty acid transporter (FABPpm), fatty acid translocase (FAT/CD36) in the liver, a key site of lipid storage and synthesis, and free fatty acid transporter albumin and triglyceride transporter [represented by apolipoprotein B (apoB)] levels in serum in reproductive Sprague-Dawley rats during late pregnancy, peak-lactation, and 1-week post-lactation as well as in non-reproductive rats. We found that all lipid transporter levels were greater in pregnant rats compared to non-reproductive rats. Lactating rats also showed higher levels of FAT/CD36 and FABPpm than non-reproductive rats. Moreover, all fat transporters also dropped back to non-reproductive levels during post-lactation except for FAT/CD36. These results indicate that fat uptake and transport capacities in liver cells are elevated during late gestation and lactation. Liver lipid secretion is up-regulated during gestation but not during lactation. These data supported the plasticity of lipid transport capacities in liver and blood during reproductive stages.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biological Science, Auburn UniversityAuburn, AL, United States
| | | | - Hayden W Hyatt
- School of Kinesiology, Auburn UniversityAuburn, AL, United States
| | | | - Wendy R Hood
- Department of Biological Science, Auburn UniversityAuburn, AL, United States
| |
Collapse
|
24
|
Wang JG, Guo YZ, Kong YZ, Dai S, Zhao BY. High non-esterified fatty acid concentrations promote expression and secretion of fibroblast growth factor 21 in calf hepatocytes cultured in vitro. J Anim Physiol Anim Nutr (Berl) 2017; 102:e476-e481. [PMID: 28447390 DOI: 10.1111/jpn.12699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022]
Abstract
Negative energy balance is considered as the pathological basis of energy metabolic disorders in periparturient dairy cows. Serum non-esterified fatty acids (NEFA) are one of the most important indicators of energy balance status. Fibroblast growth factor 21 (FGF21) has been identified as a hepatokine involved in regulation of metabolic adaptations, such as promoting hepatic lipid oxidation and ketogenesis, during energy deprivation. However, the direct effects of NEFA on FGF21 expression and secretion in bovine hepatocytes are not entirely clear. The objective of this study was to investigate the effects of different NEFA concentrations on FGF21 expression and secretion in calf hepatocytes cultured in vitro. NEFA were added to the culture solution at final concentrations of 0.6, 1.2, 1.8 and 2.4 mmol/L. After 24 hr of continuous culture, FGF21 mRNA and protein expression levels in the hepatocytes were determined by real-time PCR and Western blot respectively. FGF21 secretion in the supernatant was determined by enzyme-linked immunosorbent assay (ELISA). The results showed that expression and secretion of FGF21 at 0.6 mmol/L NEFA-treated hepatocytes was higher than that of the control group (p < .05). The FGF21 expression and secretion were similar at 1.2, 1.8 and 2.4 mmol/L NEFA-treated hepatocytes and significantly higher than those observed for controls (p < .01). These data suggest that high concentrations of NEFA significantly promote FGF21 expression and secretion in bovine hepatocytes. In particular, this promotion occurs in a dose-dependent manner and may be involved in the pathological processes of energy metabolism disorders of dairy cows in the peripartum period.
Collapse
Affiliation(s)
- J G Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Z Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Z Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - S Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - B Y Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Nayeri S, Stothard P. Tissues, Metabolic Pathways and Genes of Key Importance in Lactating Dairy Cattle. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40362-016-0040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Menon R, Patel AB, Joshi C. Comparative analysis of SNP candidates in disparate milk yielding river buffaloes using targeted sequencing. PeerJ 2016; 4:e2147. [PMID: 27441113 PMCID: PMC4941740 DOI: 10.7717/peerj.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
River buffalo (Bubalus bubalis) milk plays an important role in economy and nutritious diet in several developing countries. However, reliable milk-yield genomic markers and their functional insights remain unexposed. Here, we have used a target capture sequencing approach in three economically important buffalo breeds namely: Banni, Jafrabadi and Mehsani, belonging to either high or low milk-yield group. Blood samples were collected from the milk-yield/breed balanced group of 12 buffaloes, and whole exome sequencing was performed using Roche 454 GS-FLX Titanium sequencer. Using an innovative approach namely, MultiCom; we have identified high-quality SNPs specific for high and low-milk yield buffaloes. Almost 70% of the reported genes in QTL regions of milk-yield and milk-fat in cattle were present among the buffalo milk-yield gene candidates. Functional analysis highlighted transcriptional regulation category in the low milk-yield group, and several new pathways in the two groups. Further, the discovered SNP candidates may account for more than half of mammary transcriptome changes in high versus low-milk yielding cattle. Thus, starting from the design of a reliable strategy, we identified reliable genomic markers specific for high and low-milk yield buffalo breeds and addressed possible downstream effects.
Collapse
Affiliation(s)
- Ramesh Menon
- Department of Animal Biotechnology, Anand Agricultural University, Anand, India
| | - Anand B Patel
- Department of Animal Biotechnology, Anand Agricultural University, Anand, India
| | - Chaitanya Joshi
- Department of Animal Biotechnology, Anand Agricultural University, Anand, India
| |
Collapse
|
27
|
The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br J Nutr 2016; 116:35-44. [DOI: 10.1017/s0007114516001641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractHigh-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose–response studies.
Collapse
|
28
|
Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows. Sci Rep 2016; 6:24642. [PMID: 27089826 PMCID: PMC4835701 DOI: 10.1038/srep24642] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
The failure to adapt metabolism to the homeorhetic demands of lactation is considered as a main factor in reducing the productive life span of dairy cows. The so far defined markers of production performance and metabolic health in dairy cows do not predict the length of productive life span satisfyingly. This study aimed to identify novel pathways and biomarkers related to productive life in dairy cows by means of (targeted) metabolomics. In a longitudinal study from 42 days before up to 100 days after parturition, we identified metabolites such as long-chain acylcarnitines and biogenic amines associated with extended productive life spans. These metabolites are mainly secreted by the liver and depend on the functionality of hepatic mitochondria. The concentrations of biogenic amines and some acylcarnitines differed already before the onset of lactation thus indicating their predictive potential for continuation or early ending of productive life.
Collapse
|
29
|
Osorio J, Jacometo C, Zhou Z, Luchini D, Cardoso F, Loor J. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine. J Dairy Sci 2016; 99:234-44. [DOI: 10.3168/jds.2015-10157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022]
|
30
|
Shin D, Lee C, Park KD, Kim H, Cho KH. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 30:309-319. [PMID: 26954162 PMCID: PMC5337909 DOI: 10.5713/ajas.15.0608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/31/2015] [Accepted: 10/03/2015] [Indexed: 01/29/2023]
Abstract
Objective Holsteins are known as the world’s highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. Methods This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. Results We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. Conclusion This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.
Collapse
Affiliation(s)
- Donghyun Shin
- Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-921, Korea
| | - Kyoung-Do Park
- The Animal Molecular Genetics & Breeding Center, Chonbuk National University, Jeonju 561-756, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-921, Korea
| | - Kwang-Hyeon Cho
- Division of Animal Breeding and Genetics, National Institute of Animal Science, Rural Development Administration, Cheonan 331-801, Korea
| |
Collapse
|
31
|
Shahzad K, Akbar H, Vailati-Riboni M, Basiricò L, Morera P, Rodriguez-Zas S, Nardone A, Bernabucci U, Loor J. The effect of calving in the summer on the hepatic transcriptome of Holstein cows during the peripartal period. J Dairy Sci 2015; 98:5401-13. [DOI: 10.3168/jds.2015-9409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
|
32
|
Selim S, Kokkonen T, Taponen J, Vanhatalo A, Elo K. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period. J Dairy Sci 2015; 98:5515-28. [DOI: 10.3168/jds.2014-8986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
|
33
|
Zhou X, Ringseis R, Wen G, Eder K. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells. J Dairy Sci 2015; 98:3840-8. [PMID: 25892691 DOI: 10.3168/jds.2014-9044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 01/22/2023]
Abstract
Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle.
Collapse
Affiliation(s)
- X Zhou
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany.
| |
Collapse
|
34
|
Akbar H, Grala T, Vailati Riboni M, Cardoso F, Verkerk G, McGowan J, Macdonald K, Webster J, Schutz K, Meier S, Matthews L, Roche J, Loor J. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows. J Dairy Sci 2015; 98:1019-32. [DOI: 10.3168/jds.2014-8584] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022]
|
35
|
Ringseis R, Gessner DK, Eder K. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows: hypothetical role of endoplasmic reticulum stress. J Anim Physiol Anim Nutr (Berl) 2014; 99:626-45. [DOI: 10.1111/jpn.12263] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Affiliation(s)
- R. Ringseis
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| | - D. K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| | - K. Eder
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| |
Collapse
|
36
|
Luo H, Zhang Y, Guo H, Zhang L, Li X, Ringseis R, Wen G, Hui D, Liang A, Eder K, He D. Transcriptional regulation of the human, porcine and bovine OCTN2 gene by PPARα via a conserved PPRE located in intron 1. BMC Genet 2014; 15:90. [PMID: 25299939 PMCID: PMC4363911 DOI: 10.1186/s12863-014-0090-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The novel organic cation transporter 2 (OCTN2) is the physiologically most important carnitine transporter in tissues and is responsible for carnitine absorption in the intestine, carnitine reabsorption in the kidney and distribution of carnitine between tissues. Genetic studies clearly demonstrated that the mouse OCTN2 gene is directly regulated by peroxisome proliferator-activated receptor α (PPARα). Despite its well conserved role as an important regulator of lipid catabolism in general, the specific genes under control of PPARα within each lipid metabolic pathway were shown to differ between species and it is currently unknown whether the OCTN2 gene is also a PPARα target gene in pig, cattle, and human. In the present study we examined the hypothesis that the porcine, bovine, and human OCTN2 gene are also PPARα target genes. RESULTS Using positional cloning and reporter gene assays we identified a functional PPRE, each in the intron 1 of the porcine, bovine, and human OCTN2 gene. Gel shift assay confirmed binding of PPARα to this PPRE in the porcine, bovine, and the human OCTN2 gene. CONCLUSIONS The results of the present study show that the porcine, bovine, and human OCTN2 gene, like the mouse OCTN2 gene, is directly regulated by PPARα. This suggests that regulation of genes involved in carnitine uptake by PPARα is highly conserved across species.
Collapse
Affiliation(s)
- Huidi Luo
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Yuanqing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Huihui Guo
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Li Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Xi Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Dequan Hui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Dongchang He
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| |
Collapse
|
37
|
Zhou X, Ringseis R, Wen G, Eder K. Carnitine transporter OCTN2 and carnitine uptake in bovine kidney cells is regulated by peroxisome proliferator-activated receptor β/δ. Acta Vet Scand 2014; 56:21. [PMID: 24716857 PMCID: PMC3998222 DOI: 10.1186/1751-0147-56-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor α (PPARα), a central regulator of fatty acid catabolism, has recently been shown to be a transcriptional regulator of the gene encoding the carnitine transporter novel organic cation transporter 2 (OCTN2) in cattle. Whether PPARβ/δ, another PPAR subtype, which has partially overlapping functions as PPARα and is known to share a large set of common target genes with PPARα, also regulates OCTN2 and carnitine transport in cattle is currently unknown. To close this gap of knowledge, we studied the effect of the PPARβ/δ activator GW0742 on mRNA and protein levels of OCTN2 and carnitine uptake in the presence and absence of the PPARβ/δ antagonist GSK3787 in the bovine Madin-Darby bovine kidney (MDBK) cell line. FINDINGS Treatment of MDBK cells with GW0742 caused a strong increase in the mRNA level of the known bovine PPARβ/δ target gene CPT1A in MDBK cells indicating activation of PPARβ/δ. The mRNA and protein level of OCTN2 was clearly elevated in MDBK cells treated with GW0742, but the stimulatory effect of GW0742 on mRNA and protein level of OCTN2 was completely blocked by GSK3787. In addition, GW0742 increased Na⁺-dependent carnitine uptake, which is mediated by OCTN2, into MDBK cells, whereas treatment of cells with the PPARβ/δ antagonist completely abolished the stimulatory effect of GW0742 on carnitine uptake. CONCLUSIONS The present study shows for the first time that gene expression of the carnitine transporter OCTN2 and carnitine transport are regulated by PPARβ/δ in bovine cells. These novel findings extend the knowledge about the molecular regulation of the OCTN2 gene and carnitine transport in cattle and indicate that regulation of OCTN2 gene expression and carnitine transport is not restricted to the PPARα subtype.
Collapse
|
38
|
Gessner DK, Schlegel G, Ringseis R, Schwarz FJ, Eder K. Up-regulation of endoplasmic reticulum stress induced genes of the unfolded protein response in the liver of periparturient dairy cows. BMC Vet Res 2014; 10:46. [PMID: 24555446 PMCID: PMC3936700 DOI: 10.1186/1746-6148-10-46] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In dairy cows, the periparturient phase is a stressful period, which is commonly associated with strong metabolic adaptations and the development of pathophysiologic conditions and disorders. Some of the symptoms occurring in the liver, such as the development of fatty liver, are similar to those observed under the condition of endoplasmic reticulum (ER) stress. Therefore, we hypothesized, that in the liver of dairy cows ER stress is induced during the periparturient phase, which in turn leads to an induction of the unfolded protein response (UPR). In order to investigate this hypothesis, we determined relative mRNA concentrations of 14 genes of the ER stress-induced UPR in liver biopsy samples of 13 dairy cows at 3 wk antepartum and 1, 5 and 14 wk postpartum. RESULTS We found, that the mRNA concentrations of 13 out of the 14 genes involved in the UPR in the liver were significantly increased (1.9 to 4.0 fold) at 1 wk postpartum compared to 3 wk antepartum. From 1 wk postpartum to later lactation, mRNA concentrations of all the genes considered were declining. Moreover, at 1 wk postpartum, mRNA concentration of the spliced variant of XBP1 was increased in comparison to 3 wk antepartum, indicating that splicing of XBP1 - a hallmark of ER stress - was induced following the onset of lactation. CONCLUSION The present study reveals, that ER stress might be induced during the periparturient phase in the liver of dairy cows. We assume that the ER stress-induced UPR might contribute to the pathophysiologic conditions commonly observed in the liver of periparturient cows, such as the development of fatty liver, ketosis or inflammation.
Collapse
Affiliation(s)
- Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen D-35392, Germany
| | - Gloria Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen D-35392, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen D-35392, Germany
| | - Frieder J Schwarz
- Chair of Animal Nutrition, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Strasse 6, Freising, Weihenstephan D-85350, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen D-35392, Germany
| |
Collapse
|
39
|
Zhou X, Wen G, Ringseis R, Eder K. Short communication: The pharmacological peroxisome proliferator-activated receptor α agonist WY-14,643 increases expression of novel organic cation transporter 2 and carnitine uptake in bovine kidney cells. J Dairy Sci 2014; 97:345-9. [DOI: 10.3168/jds.2013-7161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022]
|
40
|
Gross J, Schwarz F, Eder K, van Dorland H, Bruckmaier R. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J Dairy Sci 2013; 96:5008-17. [DOI: 10.3168/jds.2012-6245] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 11/19/2022]
|
41
|
Bionaz M, Chen S, Khan MJ, Loor JJ. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Res 2013; 2013:684159. [PMID: 23737762 PMCID: PMC3657398 DOI: 10.1155/2013/684159] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022] Open
Abstract
Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle.
Collapse
Affiliation(s)
- Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Shuowen Chen
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Muhammad J. Khan
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J. Loor
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Akbar H, Bionaz M, Carlson D, Rodriguez-Zas S, Everts R, Lewin H, Drackley J, Loor J. Feed restriction, but not l-carnitine infusion, alters the liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows. J Dairy Sci 2013; 96:2201-2213. [DOI: 10.3168/jds.2012-6036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/02/2013] [Indexed: 01/21/2023]
|
43
|
Rosenbaum S, Ringseis R, Most E, Hillen S, Becker S, Erhardt G, Reiner G, Eder K. Genes involved in carnitine synthesis and carnitine uptake are up-regulated in the liver of sows during lactation. Acta Vet Scand 2013; 55:24. [PMID: 23497718 PMCID: PMC3608077 DOI: 10.1186/1751-0147-55-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/07/2013] [Indexed: 11/13/2022] Open
Abstract
Background Convincing evidence exist that carnitine synthesis and uptake of carnitine into cells is regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Sows are typically in a negative energy balance during peak lactation. We investigated the hypothesis that genes involved in carnitine synthesis and uptake in the liver of sows are up-regulated during peak lactation. Findings Transcript levels of several PPARα target genes involved in fatty acid uptake (FABP4, SLC25A20), fatty acid oxidation (ACOX1, CYP4A24) and ketogenesis (HMGCS2, FGF21) were elevated in the liver of lactating compared to non-lactating sows (P < 0.05). In addition, transcript levels of genes involved in carnitine synthesis (ALDH9A1, TMLHE, BBOX1) and carnitine uptake (SLC22A5) in the liver were greater in lactating than in non-lactating sows (P < 0.05). Carnitine concentrations in liver and plasma were about 20% and 50%, respectively, lower in lactating than in non-lactating sows (P < 0.05), which is likely due to an increased loss of carnitine via the milk. Conclusions The results of the present study show that PPARα is activated in the liver of sows during lactation which leads to an up-regulation of genes involved in carnitine synthesis and carnitine uptake. The PPARα mediated up-regulation of genes involved in carnitine synthesis and uptake in the liver of lactating sows may be regarded as an adaptive mechanism to maintain hepatic carnitine levels at a level sufficient to transport excessive amounts of fatty acids into the mitochondrion.
Collapse
|
44
|
Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res 2013; 2013:613864. [PMID: 23577023 PMCID: PMC3614066 DOI: 10.1155/2013/613864] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR β / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.
Collapse
Affiliation(s)
- Stéphane Mandard
- Centre de Recherche INSERM-UMR866 “Lipides, Nutrition, Cancer” Faculté de Médecine, Université de Bourgogne 7, Boulevard Jeanne d'Arc, 21079 Dijon Cedex, France
| | - David Patsouris
- Laboratoire CarMeN, UMR INSERM U1060/INRA 1235, Université Lyon 1, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
- Department of Chemical Physiology, The Scripps Research Institute, MB-24, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Gessner DK, Schlegel G, Keller J, Schwarz FJ, Ringseis R, Eder K. Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. J Dairy Sci 2012; 96:1038-43. [PMID: 23245956 DOI: 10.3168/jds.2012-5967] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/06/2012] [Indexed: 01/21/2023]
Abstract
In the liver of dairy cows, the production of cytokines is enhanced during the periparturient phase, which in turn leads to inflammation and an impairment of hepatic function. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that controls the transcription of genes encoding various antioxidative and cytoprotective proteins. In the present study, we investigated the hypothesis that Nrf2 is activated in the liver of dairy cows during the periparturient phase to protect the liver against the deleterious effects of cytokines and reactive oxygen species. Therefore, we determined relative mRNA abundances of TNF (encoding tumor necrosis factor-α), various acute phase proteins and several Nrf2 target genes in liver biopsy samples of 20 dairy cows at each time point from 3 wk antepartum to 1, 5, and 14 wk postpartum. We observed an increase in mRNA abundances of TNF and acute-phase proteins [serum amyloid A 3 (SAA3), haptoglobin (HP), and C-reactive protein (CRP)] from 3 wk antepartum to 1 wk postpartum, indicative of a proinflammatory condition. Messenger RNA abundances of various Nrf2 target genes with antioxidative or cytoprotective functions [glutathione peroxidase 3 (GPX3); microsomal glutathione S-transferase 3 (MGST3); superoxide dismutase (SOD1); catalase (CAT); metallothioneins 1A, 1E, and 2A (MT1A, MT1E, and MT2A, respectively); NAD(P)H dehydrogenase, quinone 1 (NQO1); heme oxygenase 2 (HMOX2); and UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1)] were also greatly increased from 3 wk antepartum to 1 wk postpartum. From 1 wk postpartum to later lactation, mRNA abundances of all the Nrf2-target genes considered declined but remained at levels that were higher than those in 3 wk antepartum. No correlations were found, however, between plasma concentrations of nonesterified fatty acids or β-hydroxybutyrate and mRNA abundances of Nrf2 target genes, indicating that a negative energy balance might not have been the main factor responsible for upregulation of those genes in the liver during early lactation. In conclusion, this study provides additional evidence that the periparturient phase in dairy cows is associated with a proinflammatory condition in the liver. Moreover, it is shown for the first time that the transition from pregnancy to lactation leads to a strong upregulation of Nrf2 target genes with antioxidative or cytoprotective properties, which might be another physiologic means to prevent the liver against damage by the inflammation process and an increased generation of reactive oxygen species.
Collapse
Affiliation(s)
- D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
47
|
Schlegel G, Ringseis R, Keller J, Schwarz FJ, Windisch W, Eder K. Expression of fibroblast growth factor 21 in the liver of dairy cows in the transition period and during lactation. J Anim Physiol Anim Nutr (Berl) 2012; 97:820-9. [PMID: 22805261 DOI: 10.1111/j.1439-0396.2012.01323.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been identified as a novel hormonal factor involved in the regulation of metabolic adaptations during energy deprivation. The present study aimed to investigate the expression of the FGF21 gene in the liver of dairy cows during the transition from pregnancy to lactation. Therefore, the relative mRNA abundance of FGF21 in liver biopsy samples of 20 dairy cows in late pregnancy (3 weeks pre-partum) and early lactation (1, 5, 14 weeks post-partum) was determined. It was observed that hepatic mRNA abundance of FGF21 at 1 week post-partum was dramatically increased (110-fold) compared to 3 weeks pre-partum (p < 0.001). With progress of lactation, mRNA concentration of FGF21 was declining; nevertheless, mRNA abundance at 5 and 14 weeks post-partum remained 25- and 10-fold increased compared to 3 weeks pre-partum (p < 0.001). Using a gene array technique, it was found that many genes involved in fatty acid oxidation, gluconeogenesis and ketogenesis were up-regulated during early lactation compared to late pregnancy. Moreover, there were positive linear correlations between hepatic mRNA concentration of FGF21 and mRNA concentrations of genes involved in ketogenesis as well as carnitine synthesis and carnitine uptake at various time-points during lactation, indicating that FGF21 could play a role in ketogenesis and carnitine metabolism in the liver of dairy cows (p < 0.05). In overall, the present study shows that expression of the FGF21 gene is strongly up-regulated during the transition period. It is assumed that the up-regulation of FGF21 might play an important role in the adaptation of liver metabolism during early lactation in dairy cows such as in other species.
Collapse
Affiliation(s)
- G Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - J Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - F J Schwarz
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - W Windisch
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|