1
|
Song J, Chen Y, Yu H, Zheng L, Wang Y, Li D. Proline-rich acidic protein 1 upregulates mitotic arrest deficient 1 to promote cisplatin-resistance of colorectal carcinoma by restraining mitotic checkpoint complex assembly. J Cancer 2023; 14:1515-1530. [PMID: 37325046 PMCID: PMC10266255 DOI: 10.7150/jca.84048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Background: The mechanism underlying cisplatin resistance in colorectal carcinoma (CRC) has not yet been elucidated. This study is aimed to illustrate the indispensable role of proline-rich acidic protein 1 (PRAP1) in cisplatin-resistant CRC. Methods: Cell viability and apoptosis were monitored using cell counting kit-8 and flow cytometry. Immunofluorescence and morphological analysis were used to determine mitotic arrest in cells. In vivo drug resistance was evaluated using a tumor xenograft assay. Results: PRAP1 was highly expressed in cisplatin-resistant CRC. PRAP1-upregulation in HCT-116 cells increased chemoresistance to cisplatin, whereas RNAi-mediated knockdown of PRAP1 sensitized cisplatin-resistant HCT-116 cells (HCT-116/DDP) to cisplatin. PRAP1-upregulation in HCT-116 cells hindered mitotic arrest and the formation of mitotic checkpoint complexes (MCC), followed by an increase in multidrug-resistant proteins such as p-glycoprotein 1 and multidrug resistance-associated protein 1, while PRAP1-knockdown in HCT-116/DDP cells partly restored colcemid-induced mitotic arrest and MCC assembly, resulting in decreased multidrug-resistant protein levels. PRAP1 downregulation-mediated sensitization to cisplatin in HCT-116/DDP cells was abolished by the inhibition of mitotic kinase activity by limiting MCC assembly. Additionally, PRAP1-upregulation increased cisplatin-resistance in CRC in vivo. Mechanistically, PRAP1 increased the expression of mitotic arrest deficient 1 (MAD1), that competitively binds to mitotic arrest deficient 2 (MAD2) in cisplatin-resistant CRC cells, leading to failed assembly of MCC and subsequent chemotherapy resistance. Conclusion: PRAP1-overexpression caused cisplatin resistance in CRC. Possibly, PRAP1 induced an increase in MAD1, which competitively interacted with MAD2 and subsequently restrained the formation of MCC, resulting in CRC cells escape from the supervision of MCC and chemotherapy resistance.
Collapse
Affiliation(s)
- Jintian Song
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Fujian Medical University, FuzhouCity 350000, Fujian Province, Fujian Province, China
| | - Yigui Chen
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Hui Yu
- Department of pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Rd., Jin'an District, Fuzhou City 350014, China
| | - Liang Zheng
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Yi Wang
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
2
|
Lei H, Wang K, Jiang T, Lu J, Dong X, Wang F, Li Q, Zhao L. KIAA0101 and UbcH10 interact to regulate non-small cell lung cancer cell proliferation by disrupting the function of the spindle assembly checkpoint. BMC Cancer 2020; 20:957. [PMID: 33008389 PMCID: PMC7532574 DOI: 10.1186/s12885-020-07463-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Chromosome mis-segregation caused by spindle assembly checkpoint (SAC) dysfunction during mitosis is an important pathogenic factor in cancer, and modulating SAC function has emerged as a potential novel therapy for non-small cell lung cancer (NSCLC). UbcH10 is considered to be associated with SAC function and the pathological types and clinical grades of NSCLC. KIAA0101, which contains a highly conserved proliferating cell nuclear antigen (PCNA)-binding motif that is involved in DNA repair in cancer cells, plays an important role in the regulation of SAC function in NSCLC cells, and bioinformatics predictions showed that this regulatory role is related to UbcH10. We hypothesized KIAA0101 and UbcH10 interact to mediate SAC dysfunction and neoplastic transformation during the development of USCLC. Methods NSCLC cell lines were used to investigate the spatial-temporal correlation between UbcH10 and KIAA0101 expression and the downstream effects of modulating their expression were evaluated. Further immunoprecipitation assays were used to investigate the possible mechanism underlying the correlation between UbcH10 and KIAA0101. Eventually, the effect of modulating UbcH10 and KIAA010 on tumor growth and its possible mechanisms were explored through in vivo tumor-bearing models. Results In this study, we demonstrated that both UbcH10 and KIAA0101 were upregulated in NSCLC tissues and cells and that their expression levels were correlated in a spatial and temporal manner. Importantly, UbcH10 and KIAA0101 coordinated to mediate the premature degradation of various SAC components to cause further SAC dysfunction and neoplastic proliferation. Moreover, tumor growth in vivo was significantly inhibited by silencing UbcH10 and KIAA0101 expression. Conclusions KIAA0101 and UbcH10 interact to cause SAC dysfunction, chromosomal instability and malignant proliferation in NSCLC, suggesting that UbcH10 and KIAA0101 are potential therapeutic targets for the treatment of NSCLC by ameliorating SAC function.
Collapse
Affiliation(s)
- Han Lei
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.,Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Tongying Jiang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Xue Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.
| | - Liming Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China. .,Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong, Shanghai, 200120, P.R. China.
| |
Collapse
|
3
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
4
|
Abstract
The goal of mitosis is to form two daughter cells each containing one copy of each mother cell chromosome, replicated in the previous S phase. To achieve this, sister chromatids held together back-to-back at their primary constriction, the centromere, have to interact with microtubules of the mitotic spindle so that each chromatid takes connections with microtubules emanating from opposite spindle poles (we will refer to this condition as bipolar attachment). Only once all replicated chromosomes have reached bipolar attachments can sister chromatids lose cohesion with each other, at the onset of anaphase, and move toward opposite spindle poles, being segregated into what will soon become the daughter cell nucleus. Prevention of errors in chromosome segregation is granted by a safeguard mechanism called Spindle Assembly Checkpoint (SAC). Until all chromosomes are bipolarly oriented at the equator of the mitotic spindle, the SAC prevents loss of sister chromatid cohesion, thus anaphase onset, and maintains the mitotic state by inhibiting inactivation of the major M phase promoting kinase, the cyclin B-cdk1 complex (Cdk1). Here, we review recent mechanistic insights about the circuitry that links Cdk1 to the SAC to ensure correct achievement of the goal of mitosis.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,DMMBM, University of Naples "Federico II", Naples, 80131, Italy
| | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
5
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
6
|
Ibrahim B. In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex. MOLECULAR BIOSYSTEMS 2016; 11:2867-77. [PMID: 26256776 DOI: 10.1039/c5mb00395d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In response to the activation of the mitotic spindle assembly checkpoint (SAC), distinct inhibitory pathways control the activity of the anaphase-promoting complex (APC/C). It remains unclear whether the different regulatory mechanisms function in separate pathways or as part of an integrated signalling system. Here, five variant models of APC/C regulation were constructed and analysed. The simulations showed that all variant models were able to reproduce the wild type behaviour of the APC. However, only one model, which included both the mitotic checkpoint complex (MCC) as well as BubR1 as direct inhibitors of the APC/C, was able to reproduce both wild and mutant type behaviour of APC/C regulation. Interestingly, in this model, the MCC as well as the BubR1 binding rate to the APC/C was comparable to the known Cdc20-Mad2 binding rate and could not be made higher. Mad2 active transport towards the spindle mid-zone accelerated the inhibition speed of the APC/C but not its concentration level. The presented study highlights the principle that a systems biology approach is critical for the SAC mechanism and could also be used for predicting hypotheses to design future experiments. The presented work has successfully distinguished between five potent inhibitors of the APC/C using a systems biology approach. Here, the favoured model contains both BubR1 and MCC as direct inhibitors of the APC/C.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Bio System Analysis Group, Friedrich-Schiller-University Jena, and Jena Centre for Bioinformatics (JCB), 07743 Jena, Germany.
| |
Collapse
|
7
|
Ibrahim B. Systems Biology Modeling of Five Pathways for Regulation and Potent Inhibition of the Anaphase-Promoting Complex (APC/C): Pivotal Roles for MCC and BubR1. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:294-305. [PMID: 25871779 DOI: 10.1089/omi.2015.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Correct DNA segregation is a fundamental process that ensures the precise and reliable inheritance of genomic information for the propagation of cell life. Eukaryotic cells have evolved a conserved surveillance control mechanism for DNA segregation named the Spindle Assembly Checkpoint (SAC).The SAC ensures that the sister chromatids of the duplicated genome are not separated and distributed to the spindle poles before all chromosomes have been properly linked to the microtubules of the mitotic spindle. Biochemically, the SAC delays cell cycle progression by preventing activation of the anaphase-promoting complex (APC/C) or cyclosome whose activation by Cdc20 is required for sister-chromatid separation; this marks the transition into anaphase. In response to activation of the checkpoint, various species control the activity of both APC/C and Cdc20. However, the underlying regulatory pathways remain largely elusive. In this study, five possible model variants of APC/C regulation were constructed, namely BubR1, Mad2, MCC, MCF2, and an all-pathways model variant. These models were validated with experimental data from the literature. A wide range of parameter values has been tested to find the critical values of the APC/C binding rate. The results show that all variants are able to capture the wild-type behavior of the APC/C. However, only one model variant, which included both MCC as well as BubR1 as potent inhibitors of the APC/C, was able to reproduce both wild-type and mutant type behavior of APC/C regulation. In conclusion, the presented work informs the regulation of fundamental processes such as SAC and APC/C in cell biology and has successfully distinguished between five competing dynamical models using a systems biology approach. The results attest that systems-level approaches are vital for molecular and cell biology.
Collapse
Affiliation(s)
- Bashar Ibrahim
- 1 Bio System Analysis Group, Friedrich-Schiller-University Jena , and Jena Centre for Bioinformatics (JCB), Jena, Germany
| |
Collapse
|
8
|
Tipton AR, Ji W, Sturt-Gillespie B, Bekier ME, Wang K, Taylor WR, Liu ST. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex. J Biol Chem 2013; 288:35149-58. [PMID: 24151075 DOI: 10.1074/jbc.m113.522375] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.
Collapse
Affiliation(s)
- Aaron R Tipton
- From the Department of Biological Sciences, The University of Toledo, Toledo, Ohio 43606
| | | | | | | | | | | | | |
Collapse
|
9
|
Schuyler SC, Wu YF, Kuan VJW. The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci 2012; 125:4197-206. [PMID: 23093575 DOI: 10.1242/jcs.107037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are commonly aneuploid. The spindle checkpoint ensures accurate chromosome segregation by controlling cell cycle progression in response to aberrant microtubule-kinetochore attachment. Damage to the checkpoint, which is a partial loss or gain of checkpoint function, leads to aneuploidy during tumorigenesis. One form of damage is a change in levels of the checkpoint proteins mitotic arrest deficient 1 and 2 (Mad1 and Mad2), or in the Mad1:Mad2 ratio. Changes in Mad1 and Mad2 levels occur in human cancers, where their expression is regulated by the tumor suppressors p53 and retinoblastoma 1 (RB1). By employing a standard assay, namely the addition of a mitotic poison at mitotic entry, it has been shown that checkpoint function is normal in many cancer cells. However, in several experimental systems, it has been observed that this standard assay does not always reveal checkpoint aberrations induced by changes in Mad1 or Mad2, where excess Mad1 relative to Mad2 can lead to premature anaphase entry, and excess Mad2 can lead to a delay in entering anaphase. This Commentary highlights how changes in the levels of Mad1 and Mad2 result in a damaged spindle checkpoint, and explores how these changes cause chromosome instability that can lead to aneuploidy during tumorigenesis.
Collapse
Affiliation(s)
- Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, 333 Taiwan, Republic of China.
| | | | | |
Collapse
|
10
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
11
|
Li M, Fang X, Wei Z, York JP, Zhang P. Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. ACTA ACUST UNITED AC 2009; 185:983-94. [PMID: 19528295 PMCID: PMC2711613 DOI: 10.1083/jcb.200904020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism.
Collapse
Affiliation(s)
- Min Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Summers MK, Jackson PK. Biochemical analysis of the Anaphase Promoting Complex: activities of E2 enzymes and substrate competitive (pseudosubstrate) inhibitors. Methods Mol Biol 2009; 545:313-330. [PMID: 19475398 DOI: 10.1007/978-1-60327-993-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Anaphase Promoting Complex (APC) ubiquitin ligase is critical for multiple processes including cell cycle, development, meiosis, and senescence. The importance of regulation of the APC by substrate competitive (pseudosubstrate) inhibitors, such as Emi1 and BubR1, has recently been demonstrated. Substrate competitive inhibitors typically bind to enzymes via the same site as substrates, but by having any combination of increased enzyme affinity and low turnover numbers, are able to "clog" the ability of the enzyme to bind and turnover substrates. For the APC, these pseudosubstrates can both position and block the APC and have been well validated as critical regulators for the APC enzymes.We have found that the substrate competitive mechanism of inhibition is sensitive to the E2 activity driving APC catalyzed ubiquitination events. This chapter provides detailed protocols for multiple in vitro ubiquitination assays of increasing complexity and the use of pseudosubstrate inhibitors in these assays. These assays are instrumental in examining the use of E2 enzymes by the APC and the intimate relationship this has with pseudosubstrate inhibition.
Collapse
Affiliation(s)
- Matthew K Summers
- Department of Cellular Regulation, Genentech Inc., South San Francisco, CA, USA
| | | |
Collapse
|
13
|
Kang J, Yang M, Li B, Qi W, Zhang C, Shokat KM, Tomchick DR, Machius M, Yu H. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1. Mol Cell 2008; 32:394-405. [PMID: 18995837 DOI: 10.1016/j.molcel.2008.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/05/2008] [Accepted: 09/26/2008] [Indexed: 01/12/2023]
Abstract
In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.
Collapse
Affiliation(s)
- Jungseog Kang
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:642-58. [PMID: 18626998 DOI: 10.1002/em.20412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA.
| |
Collapse
|
15
|
The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 2008; 31:544-556. [PMID: 18722180 DOI: 10.1016/j.molcel.2008.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.
Collapse
|
16
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
17
|
In-silico modeling of the mitotic spindle assembly checkpoint. PLoS One 2008; 3:e1555. [PMID: 18253502 PMCID: PMC2215771 DOI: 10.1371/journal.pone.0001555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/14/2008] [Indexed: 01/28/2023] Open
Abstract
Background The Mitotic Spindle Assembly Checkpoint (MSAC) is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer. Principle Findings We have constructed and validated for the human MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the “Dissociation” and the “Convey” model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments. Conclusion Only in the controlled case, our models show MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.
Collapse
|
18
|
Hajeri VA, Stewart AM, Moore LL, Padilla PA. Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans. Cell Div 2008; 3:6. [PMID: 18248670 PMCID: PMC2265278 DOI: 10.1186/1747-1028-3-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi) to identify genes synthetic lethal with the viable san-1(ok1580) deletion mutant. Results The san-1(ok1580) animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580) embryos is significantly reduced when HCP-1 (CENP-F homologue), MDF-1 (MAD-1 homologue), MDF-2 (MAD-2 homologue) or BUB-3 (predicted BUB-3 homologue) are reduced by RNAi. Interestingly, the viability of san-1(ok1580) embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580);hcp-1(RNAi) embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging). Several of the san-1(ok1580);hcp-1(RNAi) animals displayed abnormal kinetochore (detected by MPM-2) and microtubule structure. The survival of mdf-2(RNAi);hcp-1(RNAi) embryos but not bub-3(RNAi);hcp-1(RNAi) embryos was also compromised. Finally, we found that san-1(ok1580) and bub-3(RNAi), but not hcp-1(RNAi) embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Conclusion Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580);hcp-1(RNAi) animals had a severe viability defect whereas in the san-1(ok1580);hcp-2(RNAi) and san-1(ok1580);hcp-2(ok1757) animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | | | | | | |
Collapse
|