1
|
Wu W, Zhu J, Nihira NT, Togashi Y, Goda A, Koike J, Yamaguchi K, Furukawa Y, Tomita T, Saeki Y, Johmura Y, Nakanishi M, Miyoshi Y, Ohta T. Ribosomal S6 kinase (RSK) plays a critical role in DNA damage response via the phosphorylation of histone lysine demethylase KDM4B. Breast Cancer Res 2024; 26:146. [PMID: 39434131 PMCID: PMC11492477 DOI: 10.1186/s13058-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Epigenetic dysregulation affecting oncogenic transcription and DNA damage response is a hallmark of cancer. The histone demethylase KDM4B, a factor regulating these processes, plays important roles in estrogen receptor-mediated transcription and DNA repair in breast cancer. However, how oncogenic phospho-signal transduction affects epigenetic regulation is not fully understood. Here we found that KDM4B phosphorylation by ribosomal S6 kinase (RSK), a downstream effector of the Ras/MAPK pathway, is critical for the function of KDM4B in response to DNA damage. METHODS KDM4B-knockout breast cancer cell lines were generated via CRISPR/Cas9-mediated gene editing. Re-expression of wild-type or phospho-site mutated KDM4B in knockout cells was performed by lentivirus-mediated gene transfer. Gene knockdown was achieved by RNA interference. DNA double-strand breaks (DSBs) were induced by ionizing radiation or laser-microirradiation. Protein accumulation at DSB sites was analyzed by immunofluorescence. KDM4B phosphorylation by RSK was assessed by in vitro and in vivo kinase assays. Gene and protein expression levels were analyzed by RT‒PCR and western blotting. The sensitivity of cells to ionizing radiation was examined by a clonogenic survival assay. RESULTS RSK phosphorylated KDM4B at Ser666, and inhibition of the phosphorylation by RSK depletion or RSK inhibitors abrogated KDM4B accumulation at the sites of DNA double-strand breaks (DSBs). DSB repair was significantly delayed in KDM4B-knockout cells or cells treated with RSK inhibitors. The replacement of endogenous KDM4B with the phosphomimetic mutant S666D restored KDM4B accumulation and DSB repair that had been inhibited by RSK inhibitors, suggesting a critical role for RSK at the specific serine residue of KDM4B in the effect of RSK inhibitors on DSB repair. As a consequence of these aberrant responses, inhibition of KDM4B phosphorylation increased the sensitivity of the cells to ionizing radiation. CONCLUSIONS Overall, the present study uncovered a novel function of RSK on the DNA damage response, which provides an additional role of its inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Jing Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
- Department of Breast Medicine, Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Naoe Taira Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Atsushi Goda
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Takuya Tomita
- Division of Protein Metabolism, The University of Tokyo, Tokyo, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.
| |
Collapse
|
2
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Tribe AKW, Peng L, Teesdale-Spittle PH, McConnell MJ. BCL6 is a context-dependent mediator of the glioblastoma response to irradiation therapy. Int J Biol Macromol 2024; 270:131782. [PMID: 38734343 DOI: 10.1016/j.ijbiomac.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/14/2023] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma is a rapidly fatal brain cancer that does not respond to therapy. Previous research showed that the transcriptional repressor protein BCL6 is upregulated by chemo and radiotherapy in glioblastoma, and inhibition of BCL6 enhances the effectiveness of these therapies. Therefore, BCL6 is a promising target to improve the efficacy of current glioblastoma treatment. BCL6 acts as a transcriptional repressor in germinal centre B cells and as an oncogene in lymphoma and other cancers. However, in glioblastoma, BCL6 induced by therapy may not be able to repress transcription. Using a BCL6 inhibitor, the whole proteome response to irradiation was compared with and without BCL6 activity. Acute high dose irradiation caused BCL6 to switch from repressing the DNA damage response to promoting stress response signalling. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) enabled comparison of BCL6 partner proteins between untreated and irradiated glioblastoma cells. BCL6 was associated with transcriptional coregulators in untreated glioblastoma including the known partner NCOR2. However, this association was lost in response to acute irradiation, where BCL6 unexpectedly associated with synaptic and plasma membrane proteins. These results reveal the activity of BCL6 under therapy-induced stress is context-dependent, and potentially altered by the intensity of that stress.
Collapse
Affiliation(s)
- Anna K W Tribe
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Lifeng Peng
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Paul H Teesdale-Spittle
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Melanie J McConnell
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
4
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Schulze J, Schöne L, Ayoub AM, Librizzi D, Amin MU, Engelhardt K, Yousefi BH, Bender L, Schaefer J, Preis E, Schulz-Siegmund M, Wölk C, Bakowsky U. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS APPLIED BIO MATERIALS 2023; 6:5502-5514. [PMID: 38016693 PMCID: PMC10732153 DOI: 10.1021/acsabm.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.
Collapse
Affiliation(s)
- Jan Schulze
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Lisa Schöne
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Abdallah M. Ayoub
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Konrad Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Behrooz H. Yousefi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Lena Bender
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Jens Schaefer
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Michaela Schulz-Siegmund
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Christian Wölk
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
6
|
Kang H, Kim B, Park J, Youn H, Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim Biophys Acta Rev Cancer 2023; 1878:188988. [PMID: 37726064 DOI: 10.1016/j.bbcan.2023.188988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The Warburg effect is a phenomenon in which cancer cells rely primarily on glycolysis rather than oxidative phosphorylation, even in the presence of oxygen. Although evidence of its involvement in cell proliferation has been discovered, the advantages of the Warburg effect in cancer cell survival under treatment have not been fully elucidated. In recent years, the metabolic characteristics of radioresistant cancer cells have been evaluated, enabling an extension of the original concept of the Warburg effect. In this review, we focused on the role of the Warburg effect in redox homeostasis and DNA damage repair, two critical factors contributing to radioresistance. In addition, we highlighted the metabolic involvement in the radioresistance of cancer stem cells, which is the root cause of tumor recurrence. Finally, we summarized radiosensitizing drugs that target the Warburg effect. Insights into the molecular mechanisms underlying the Warburg effect and radioresistance can provide valuable information for developing strategies to enhance the efficacy of radiotherapy and provide future directions for successful cancer therapy.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Jang B, Chung MG, Lee DS. Association between gut microbial change and acute gastrointestinal toxicity in patients with prostate cancer receiving definitive radiation therapy. Cancer Med 2023; 12:20727-20735. [PMID: 37921267 PMCID: PMC10709749 DOI: 10.1002/cam4.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND This prospective study investigated the association between gut microbial changes and acute gastrointestinal toxicities in prostate cancer patients receiving definitive radiation therapy (RT). METHODS Seventy-nine fecal samples were analyzed. Stool samples were collected at the following timepoints: pre-RT (prRT), 2 weeks after the start of RT (RT-2w), 5 weeks after the start of RT (RT-5w), 1 month after completion of RT (poRT-1 m), and 3 months after completion of RT (poRT-3 m). We computed the microbial community polarization index (MCPI) as an indicator of RT-induced dysbiosis. RESULTS Patients experiencing toxicity had lower alpha diversity, especially at RT-2w (p = 0.037) and RT-5w (p = 0.003). Compared to patients without toxicity, the MCPI in those experiencing toxicities was significantly elevated (p = 0.019). In terms of predicted metabolic pathways, we found linearly decreasing pathways, including carbon fixation pathways in prokaryotes (p = 0.035) and the bacterial secretion system (p = 0.005), in patients who experienced toxicities. CONCLUSIONS We showed RT-induced dysbiosis among patients who experienced toxicities. Reduced diversity and elevated RT-related MCPI could be helpfully used for developing individualized RT approaches.
Collapse
Affiliation(s)
- Bum‐Sup Jang
- Department of Radiation OncologyCollege of MedicineSeoul National UniversitySeoulKorea
| | - Moon Gyu Chung
- Microbiome centerKorea Research Institute of Bio‐medical ScienceDaejeonKorea
| | - Dong Soo Lee
- Department of Radiation Oncology, College of MedicineThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
8
|
Singh AK, Dadey DY, Rau MJ, Fitzpatrick J, Shah HK, Saikia M, Townsend R, Thotala D, Hallahan DE, Kapoor V. Blocking the functional domain of TIP1 by antibodies sensitizes cancer to radiation therapy. Biomed Pharmacother 2023; 166:115341. [PMID: 37625322 DOI: 10.1016/j.biopha.2023.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) and glioblastoma (GB) have poor prognoses. Discovery of new molecular targets is needed to improve therapy. Tax interacting protein 1 (TIP1), which plays a role in cancer progression, is overexpressed and radiation-inducible in NSCLC and GB. We evaluated the effect of an anti-TIP1 antibody alone and in combination with ionizing radiation (XRT) on NSCLC and GB in vitro and in vivo. NSCLC and GB cells were treated with anti-TIP1 antibodies and evaluated for proliferation, colony formation, endocytosis, and cell death. The efficacy of anti-TIP1 antibodies in combination with XRT on tumor growth was measured in mouse models of NSCLC and GB. mRNA sequencing was performed to understand the molecular mechanisms involved in the action of anti-TIP1 antibodies. We found that targeting the functional domain of TIP1 leads to endocytosis of the anti-TIP1 antibody followed by reduced proliferation and increased apoptosis-mediated cell death. Anti-TIP1 antibodies bound specifically (with high affinity) to cancer cells and synergized with XRT to significantly increase cytotoxicity in vitro and reduce tumor growth in mouse models of NSCLC and GB. Importantly, downregulation of cancer survival signaling pathways was found in vitro and in vivo following treatment with anti-TIP1 antibodies. TIP1 is a new therapeutic target for cancer treatment. Antibodies targeting the functional domain of TIP1 exhibited antitumor activity and enhanced the efficacy of radiation both in vitro and in vivo. Anti-TIP1 antibodies interrupt TIP1 function and are effective cancer therapy alone or in combination with XRT in mouse models of human cancer.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - David Ya Dadey
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - James Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO,USA
| | - Harendra K Shah
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Minakshi Saikia
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Reid Townsend
- Department of Medicine, Washington University in St. Louis, St. Louis, MO,USA; Siteman Cancer Center, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, St. Louis, MO, USA.
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
9
|
Despotović A, Janjetović K, Zogović N, Tovilović-Kovačević G. Pharmacological Akt and JNK Kinase Inhibitors 10-DEBC and SP600125 Potentiate Anti-Glioblastoma Effect of Menadione and Ascorbic Acid Combination in Human U251 Glioblastoma Cells. Biomedicines 2023; 11:2652. [PMID: 37893026 PMCID: PMC10604608 DOI: 10.3390/biomedicines11102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, characterized by a highly invasive nature and therapy resistance. Combination of menadione and ascorbic acid (AA+MD) exerts strong ROS-mediated anti-GBM activity in vitro. The objective of this study was to improve AA+MD anti-GBM potential by modulating the activity of Akt and c-Jun N-terminal kinase (JNK), molecules with an important role in GBM development. The effects of Akt and JNK modulation on AA+MD toxicity in U251 human glioblastoma cells were assessed by cell viability assays, flow cytometry, RNA interference and plasmid overexpression, and immunoblot analysis. The AA+MD induced severe oxidative stress, an early increase in Akt phosphorylation followed by its strong inhibition, persistent JNK activation, and U251 cell death. Small molecule Akt kinase inhibitor 10-DEBC enhanced, while pharmacological and genetic Akt activation decreased, AA+MD-induced toxicity. The U251 cell death potentiation by 10-DEBC correlated with an increase in the combination-induced autophagic flux and was abolished by genetic autophagy silencing. Additionally, pharmacological JNK inhibitor SP600125 augmented combination toxicity toward U251 cells, an effect linked with increased ROS accumulation. These results indicate that small Akt and JNK kinase inhibitors significantly enhance AA+MD anti-GBM effects by autophagy potentiation and amplifying deleterious ROS levels.
Collapse
Affiliation(s)
- Ana Despotović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Kristina Janjetović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Nevena Zogović
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.D.); (K.J.)
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
11
|
Arechaga-Ocampo E. Epigenetics as a determinant of radiation response in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:145-190. [PMID: 38359968 DOI: 10.1016/bs.ircmb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Radiation therapy is a cornerstone of modern cancer treatment. Treatment is based on depositing focal radiation to the tumor to inhibit cell growth, proliferation and metastasis, and to promote the death of cancer cells. In addition, radiation also affects non-tumor cells in the tumor microenvironmental (TME). Radiation resistance of the tumor cells is the most common cause of treatment failure, allowing survival of cancer cell and subsequent tumor growing. Molecular radioresistance comprises genetic and epigenetic characteristics inherent in cancer cells, or characteristics acquired after exposure to radiation. Furthermore, cancer stem cells (CSCs) and non-tumor cells into the TME as stromal and immune cells have a role in promoting and maintaining radioresistant tumor phenotypes. Different regulatory molecules and pathways distinctive of radiation resistance include DNA repair, survival signaling and cell death pathways. Epigenetic mechanisms are one of the most relevant events that occur after radiotherapy to regulate the expression and function of key genes and proteins in the differential radiation-response. This article reviews recent data on the main molecular mechanisms and signaling pathways related to the biological response to radiotherapy in cancer; highlighting the epigenetic control exerted by DNA methylation, histone marks, chromatin remodeling and m6A RNA methylation on gene expression and activation of signaling pathways related to radiation therapy response.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
12
|
Corrales-Guerrero S, Cui T, Castro-Aceituno V, Yang L, Nair S, Feng H, Venere M, Yoon S, DeWees T, Shen C, Williams TM. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1. Cancer Lett 2023; 570:216308. [PMID: 37482342 DOI: 10.1016/j.canlet.2023.216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor. Radioresistance largely contributes to poor clinical outcomes in GBM patients. We targeted ribonucleotide reductase subunit 2 (RRM2) with triapine to radiosensitize GBM. We found RRM2 is associated with increasing tumor grade, is overexpressed in GBM over lower grade gliomas and normal tissue, and is associated with worse survival. We found silencing or inhibition of RRM2 by siRNA or triapine sensitized GBM cells to ionizing radiation (IR) and delayed resolution of IR-induced γ-H2AX nuclear foci. In vivo, triapine and IR reduced tumor growth and increased mouse survival. Intriguingly, triapine led to RRM2 upregulation and CHK1 activation, suggesting a CHK1-dependent RRM2 upregulation following RRM2 inhibition. Consistently, silencing or inhibition of CHK1 with rabusertib abolished the triapine-induced RRM2 upregulation. Accordingly, combining rabusertib and triapine resulted in synthetic lethality in GBM cells. Collectively, our results suggest RRM2 is a promising therapeutic target for GBM, and targeting RRM2 with triapine sensitizes GBM cells to radiation and independently induces synthetic lethality of GBM cells with CHK1 inhibition. Our findings suggest combining triapine with radiation or rabusertib may improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Sergio Corrales-Guerrero
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | | - Linlin Yang
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sindhu Nair
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Haihua Feng
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Stephanie Yoon
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Todd DeWees
- Division of Biostatistics, City of Hope, Duarte, CA, USA
| | - Changxian Shen
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
13
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
14
|
Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, Firouzjaei AA, Amraee A, Tarighatnia A, Azimian H. Inducing apoptosis by using microRNA in radio-resistant prostate cancer: an in-silico study with an in-vitro validation. Mol Biol Rep 2023:10.1007/s11033-023-08545-8. [PMID: 37294470 DOI: 10.1007/s11033-023-08545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND One of the problems with radiation therapy (RT) is that prostate tumor cells are often radio-resistant, which results in treatment failure. This study aimed to determine the procedure involved in radio-resistant prostate cancer apoptosis. For a deeper insight, we devoted a novel bioinformatics approach to analyze the targeting between microRNAs and radio-resistant prostate cancer genes. METHOD This study uses the Tarbase, and the Mirtarbase databases as validated experimental databases and mirDIP as a predicted database to identify microRNAs that target radio-resistant anti-apoptotic genes. These genes are used to construct the radio-resistant prostate cancer genes network using the online tool STRING. The validation of causing apoptosis by using microRNA was confirmed with flow cytometry of Annexin V. RESULTS The anti-apoptotic gene of radio-resistant prostate cancer included BCL-2, MCL1, XIAP, STAT3, NOTCH1, REL, REL B, BIRC3, and AKT1 genes. These genes were identified as anti-apoptotic genes for radio-resistant prostate cancer. The crucial microRNA that knockdown all of these genes was hsa-miR-7-5p. The highest rate of apoptotic cells in a cell transfected with hsa-miR-7-5p was (32.90 ± 1.49), plenti III (21.99 ± 3.72), and the control group (5.08 ± 0.88) in 0 Gy (P < 0.001); also, this rate was in miR-7-5p (47.01 ± 2.48), plenti III (33.79 ± 3.40), and the control group (16.98 ± 3.11) (P < 0.001) for 4 Gy. CONCLUSION The use of this new treatment such as gene therapy to suppress genes involved in apoptosis can help to improve the treatment results and increase the quality of life of patients with prostate cancer.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Ali Tarighatnia
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Zhang H, Zheng J, Fu Y, Ling J, Liu Z, Lin X, Dong X, Sun Y, Tan T, Guo Z, Xie G. Overexpression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation. Breast Cancer Res Treat 2023; 198:437-446. [PMID: 36797433 DOI: 10.1007/s10549-023-06876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE POU3F2 is associated with malignant behaviors and poor prognosis in cancer. However, the function and mechanism of POU3F2 in breast cancer remain to be elucidated. Our study aimed to explore the role of POU3F2 in triple-negative breast cancer and radiotherapy. METHODS POU3F2 expression was examined by RT-PCR and Western blot. The proliferation of cancer cells was measured by MTT assay. Migration of cancer cells was determined by Transwell assay and wound healing assay. To determine which protein interacts with POU3F2, Co-IP was performed. Survival analysis was performed based on the online database GEPIA. DNA damage after radiation was examined by Comet Assay. Radiosensitivity was evaluated with clonogenic survival assays. A tumor xenograft model was established with MDA-MB-231 breast cancer cells in BALB/c nude mice to explore the effect of POU3F2 in vivo. RESULTS We found that the expression of POU3F2 was significantly elevated in breast cancer cells, especially in TNBC, and higher POU3F2 expression was related to poor prognosis of patients with breast cancer. Functional assays revealed that POU3F2 promoted proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells in vitro and in vivo. In addition, the knockdown of POU3F2 decreased the radioresistance of TNBC cells in vitro. Furthermore, POU3F2 could enhance the activation of the Akt pathway by interacting with ARNT2, thereby promoting proliferation and radioresistance in TNBC cells. CONCLUSIONS Our results provide evidence that high expression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation by interacting with ARNT2.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jieling Zheng
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yiming Fu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ling
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - ZiShen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yao Sun
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoze Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
17
|
Seol MY, Choi SH, Lee IJ, Park HS, Kim HR, Kim SK, Yoon HI. Selective Inhibition of PI3K Isoforms in Brain Tumors Suppresses Tumor Growth by Increasing Radiosensitivity. Yonsei Med J 2023; 64:139-147. [PMID: 36719022 PMCID: PMC9892548 DOI: 10.3349/ymj.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is a malignant brain tumor with poor prognosis. Radioresistance is a major challenge in the treatment of brain tumors. The development of several types of tumors, including GBM, involves the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Upon activation, this pathway induces radioresistance. In this study, we investigated whether additional use of selective inhibitors of PI3K isoforms would enhance radiosensitivity in GBM. MATERIALS AND METHODS We evaluated whether radiation combined with PI3K isoform selective inhibitors can suppress radioresistance in GBM. Glioma 261 expressing luciferase (GL261-luc) and LN229 were used to confirm the effect of combination of radiation and PI3K isoform inhibitors in vitro. Cell viability was confirmed by clonogenic assay, and inhibition of PI3K/AKT signaling activation was observed by Western blot. To confirm radiosensitivity, the expression of phospho-γ-H2AX was observed by immunofluorescence. In addition, to identify the effect of a combination of radiation and PI3K-α isoform inhibitor in vivo, an intracranial mouse model was established by implanting GL261-luc. Tumor growth was observed by IVIS imaging, and survival was analyzed using Kaplan-Meier survival curves. RESULTS Suppression of the PI3K/AKT signaling pathway increased radiosensitivity, and PI3K-α inhibition had similar effects on PI3K-pan inhibition in vitro. The combination of radiotherapy and PI3K-α isoform inhibitor suppressed tumor growth and extended survival in vivo. CONCLUSION This study verified that PI3K-α isoform inhibition improves radiosensitivity, resulting in tumor growth suppression and extended survival in GBM mice.
Collapse
Affiliation(s)
- Mi Youn Seol
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Soon Park
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Kyum Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
BPR0C261, An Analogous of Microtubule Disrupting Agent D-24851 Enhances the Radiosensitivity of Human Non-Small Cell Lung Cancer Cells via p53-Dependent and p53-Independent Pathways. Int J Mol Sci 2022; 23:ijms232214083. [PMID: 36430560 PMCID: PMC9692308 DOI: 10.3390/ijms232214083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Destabilization of microtubule dynamics is a primary strategy to inhibit fast growing tumor cells. The low cytotoxic derivative of microtubule inhibitor D-24851, named BPR0C261 exhibits antitumor activity via oral administration. In this study, we investigated if BPR0C261 could modulate the radiation response of human non-small cell lung cancer (NSCLC) cells with or without p53 expression. (2) Different doses of BPR0C261 was used to treat human NSCLC A549 (p53+/+) cells and H1299 (p53-/-) cells. The cytotoxicity, radiosensitivity, cell cycle distribution, DNA damage, and protein expression were evaluated using an MTT assay, a colony formation assay, flow cytometry, a comet assay, and an immunoblotting analysis, respectively. (3) BPR0C261 showed a dose-dependent cytotoxicity on A549 cells and H1299 cells with IC50 at 0.38 μM and 0.86 μM, respectively. BPR0C261 also induced maximum G2/M phase arrest and apoptosis in both cell lines after 24 h of treatment with a dose-dependent manner. The colony formation analysis demonstrated that a combination of low concentration of BPR0C261 and X-rays caused a synergistic radiosensitizing effect on NSCLC cells. Additionally, we found that a low concentration of BPR0C261 was sufficient to induce DNA damage in these cells, and it increased the level of DNA damage induced by a fractionation radiation dose (2 Gy) of conventional radiotherapy. Furthermore, the p53 protein level of A549 cell line was upregulated by BPR0C261. On the other hand, the expression of PTEN tumor suppressor was found to be upregulated in H1299 cells but not in A549 cells under the same treatment. Although radiation could not induce PTEN in H1299 cells, a combination of low concentration of BPR0C261 and radiation could reverse this situation. (4) BPR0C261 exhibits specific anticancer effects on NSCLC cells by the enhancement of DNA damage and radiosensitivity with p53-dependent and p53-independent/PTEN-dependent manners. The combination of radiation and BPR0C261 may provide an important strategy for the improvement of radiotherapeutic treatment.
Collapse
|
19
|
Kanyilmaz G, Oltulu P, Benli Yavuz B, Aktan M. Prognostic importance of expression of mini-chromosome maintenance proteins (MCMs) in patients with nasopharyngeal cancer treated with curative radiotherapy. Braz J Otorhinolaryngol 2022; 88 Suppl 4:S18-S25. [PMID: 34144903 DOI: 10.1016/j.bjorl.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The prognostic importance of minichromosome maintenance complex expression in nasopharyngeal cancer is still unknown. We aimed to find whether minichromosome maintenance complex 2-7 expression may potentially be used to predict the prognosis of nasopharyngeal cancer patients treated with definitive radiotherapy. METHODS Between April 2007 and July 2020, patients with nasopharyngeal cancer treated with radiotherapy were identified. Immunohistochemical analysis was performed on formalin-fixed paraffin-embedded tissues of cases. A single pathologist analyzed the histologic specimens of all patients. RESULTS Totally, 67 patients were included. The median followup was 75.3 months. Higher tumor (T) stage was correlated with minichromosome maintenance complex 2 overexpression. Minichromosome maintenance complex s expression was also associated with histopathologic subgroups. According to univariate analysis, AJCC stage, histopathological subgroups, tumor response after treatment, minichromosome maintenance complex 2, 3, 5, 6 and 7 expression were the prognostic factors that predict overall survival. According to multivariate analysis minichromosome maintenance complex 7 expression was the only prognostic marker for both progression-free survival and overall survival. CONCLUSION The overexpression of minichromosome maintenance complex 2, 3, 5, 6 and 7 indicated bad prognosis. Minichromosome maintenance complex 7 was an independent prognostic factor for survival outcomes in nasopharyngeal cancer and may be a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Gul Kanyilmaz
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey.
| | - Pembe Oltulu
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Pathology, Konya, Turkey
| | - Berrin Benli Yavuz
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey
| | - Meryem Aktan
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Radiation Oncology, Konya, Turkey
| |
Collapse
|
20
|
Rajput M, Mishra D, Kumar K, Singh RP. Silibinin Radiosensitizes EGF Receptor-knockdown Prostate Cancer Cells by Attenuating DNA Repair Pathways. J Cancer Prev 2022; 27:170-181. [PMID: 36258717 PMCID: PMC9537578 DOI: 10.15430/jcp.2022.27.3.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Emergence of radioresistance in prostate cancer (PCa) cells is a major obstacle in cancer therapy and contributes to the relapse of the disease. EGF receptor (EGFR) signaling plays an important role in the development of radioresistance. Herein, we have assessed the modulatory effects of silibinin on radiation-induced resistance via DNA repair pathways in EGFR-knockdown DU145 cells. shRNA-based silencing of EGFR was done in radioresistant human PCa DU145 cells and effects of ionizing radiation (IR) and silibinin were assessed using clonogenic and trypan blue assays. Furthermore, radiosensitizing effects of silibinin on PCa in context with EGFR were analyzed using flow cytometry, comet assay, and immunoblotting. Silibinin decreased the colony formation ability with an increased death of DU145 cells exposed to IR (5 Gray), with a concomitant decrease in Rad51 protein expression. Silibinin (25 μM) augmented the IR-induced cytotoxic effect in EGFR-knockdown PCa cells, along with induction of G2/M phase cell cycle arrest. Further, we studied homologous recombination (HR) and non-homologous end joining (NHEJ) pathways in silibinin-induced DNA double-strand breaks in EGFR-knockdown DU145 cells. Silibinin down-regulated the expression of Rad51 and DNA-dependent protein kinase proteins without any considerable effect on Ku70 and Ku80 in IR-exposed EGFR-knockdown PCa cells. The pro-survival signaling proteins, phospho-extracellular signal-regulated kinases (ERK)1/2, phospho-Akt and phospho-STAT3 were decreased by silibinin in EGFR-deficient PCa cells. These findings suggest a novel mechanism of silibinin-induced radiosensitization of PCa cells by targeting DNA repair pathways, HR and NHEJ, and suppressing the pro-survival signaling pathways, ERK1/2, Akt and STAT3, in EGFR-knockdown PCa cells.
Collapse
Affiliation(s)
- Mohit Rajput
- Cancer Biology Laboratory, School of Life Sciences, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, New Delhi, India
| | - Kunal Kumar
- Cancer Biology Laboratory, School of Life Sciences, New Delhi, India
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, New Delhi, India,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India,Correspondence to Rana P. Singh, E-mail: , https://orcid.org/0000-0003-4261-7044
| |
Collapse
|
21
|
Toulany M, Iida M, Lettau K, Coan JP, Rebholz S, Khozooei S, Harari PM, Wheeler DL. Targeting HER3-dependent activation of nuclear AKT improves radiotherapy of non-small cell lung cancer. Radiother Oncol 2022; 174:92-100. [PMID: 35839938 PMCID: PMC10083767 DOI: 10.1016/j.radonc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AKT1 must be present and activated in the nucleus immediately after irradiation to stimulate AKT1-dependent double-strand breaks (DSB) repair through the fast non-homologous end-joining (NHEJ) repair process. We investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the phosphorylation of nuclear AKT and radiation response. MATERIALS AND METHODS Using genetic approaches and pharmacological inhibitors, we investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the activation of nuclear AKT in non-small cell lung cancer (NSCLC) cells in vitro. ɤH2AX foci assay was applied to investigate the role of AKT activating signaling pathway on DSB repair. A mouse tumor xenograft model was used to study the impact of discovered signaling pathway activating nuclear AKT on the radiation response of tumors in vivo. RESULTS Our data suggests that neither ionizing radiation (IR) nor stimulation with HER family receptor ligands induced rapid nuclear translocation of endogenous AKT1. GFP-tagged exogenous AKT1 translocated to the nucleus under un-irradiated conditions and IR did not stimulate this translocation. Nuclear translocation of GFP-AKT1 was impaired by the AKT inhibitor MK2206 as shown by its accumulation in the cytoplasmic fraction. IR-induced phosphorylation of nuclear AKT was primarily dependent on HER3 expression and tyrosine kinase activation of epidermal growth factor receptor. In line with the role of AKT1 in DSB repair, the HER3 neutralizing antibody patritumab as well as HER3-siRNA diminished DSB repair in vitro. Combination of patritumab with radiotherapy improved the effect of radiotherapy on tumor growth delay in a xenograft model. CONCLUSION IR-induced activation of nuclear AKT occurs inside the nucleus that is mainly dependent on HER3 expression in NSCLC. These findings suggest that targeting HER3 in combination with radiotherapy may provide a logical treatment option for investigation in selected NSCLC patients.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - John P Coan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Simone Rebholz
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Sudhanva MS, Hariharasudhan G, Jun S, Seo G, Kamalakannan R, Kim HH, Lee JH. MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:1509. [DOI: https:/doi.org/10.3390/cells11091509 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
|
23
|
MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:cells11091509. [PMID: 35563814 PMCID: PMC9102532 DOI: 10.3390/cells11091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
|
24
|
Gabriel NN, Balaji K, Jayachandran K, Inkman M, Zhang J, Dahiya S, Goldstein M. Loss of H3K27 trimethylation promotes radiotherapy resistance in medulloblastoma and induces an actionable vulnerability to BET inhibition. Cancer Res 2022; 82:2019-2030. [PMID: 35315927 DOI: 10.1158/0008-5472.can-21-0871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Medulloblastoma has been categorized into four subgroups based on genetic, epigenetic, and transcriptional profiling. Radiation is used for treating medulloblastoma regardless of the subgroup. A better understanding of the molecular pathways determining radiotherapy response could help improve medulloblastoma treatment. Here, we investigated the role of the EZH2-dependent histone H3K27 trimethylation in radiotherapy response in medulloblastoma. The tumors in 47.2% of group 3 and 4 medulloblastoma patients displayed H3K27me3 deficiency. Loss of H3K27me3 was associated with a radioresistant phenotype, high relapse rates, and poor overall survival. In H3K27me3-deficient medulloblastoma cells, an epigenetic switch from H3K27me3 to H3K27ac occurred at specific genomic loci, altering the transcriptional profile. The resulting upregulation of EPHA2 stimulated excessive activation of the pro-survival AKT signaling pathway, leading to radiotherapy resistance. BET inhibition overcame radiation resistance in H3K27me3-deficient medulloblastoma cells by suppressing H3K27ac levels, blunting EPHA2 overexpression, and mitigating excessive AKT signaling. Additionally, BET inhibition sensitized medulloblastoma cells to radiation by enhancing the apoptotic response through suppression of Bcl-xL and upregulation of Bim. This work demonstrates a novel mechanism of radiation resistance in medulloblastoma and identifies an epigenetic marker predictive of radiotherapy response. Based on these findings, we propose an epigenetically guided treatment approach targeting radiotherapy resistance in medulloblastoma patients.
Collapse
Affiliation(s)
- Nishanth N Gabriel
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kumaresh Balaji
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kay Jayachandran
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew Inkman
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jin Zhang
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Sonika Dahiya
- Washington University in St. Louis School of Medicine, St Louis, MO, United States
| | - Michael Goldstein
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Shih PC. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacol Ther 2022; 234:108118. [PMID: 35085605 DOI: 10.1016/j.pharmthera.2022.108118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The efficacy of radiotherapy has long known to be limited by the emergence of resistance. The four Rs of radiotherapy (DNA damage repair, reoxygenation, redistribution of the cell cycle, and repopulation) are generally accepted concepts in radiobioolgy. Recent studies have strongly linked signal transducer and activator of transcription 3 (STAT3) to the regulation of cancer stemness and radioresistance. In particular, a STAT3 pathway inhibitor napabucasin, claimed to be the first cancer stemness antagonist in clinical trials, strengthens the link. However, no reviews connect STAT3 with the four Rs of radiotherapy. Herein, the evidence-based role of STAT3 in radioresistance is discussed in relation to the four Rs of radiotherapy. The proposed mechanisms include upstream and downstream effector proteins of STAT3, including FOXM1, MELK, NEK2, AKT, EZH2, and HIF1α. Downstream transcriptional products of the mechanistically-related proteins are involved in cancer stemness, anti-apoptosis, and the four Rs of radiotherapy. Utilizing selective inhibitors of the mechanistically-related proteins has shown promising antagonism of radioresistance, suggesting that the expression levels of these proteins may be biomarkers for the prediction of radiotherapeutic outcomes, and that this molecular mechanism may provide a rational axis through which to treat radioresistance.
Collapse
Affiliation(s)
- Po-Chang Shih
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
27
|
Caglioti C, Palazzetti F, Monarca L, Lobello R, Ceccarini MR, Iannitti RG, Russo R, Ragonese F, Pennetta C, De Luca A, Codini M, Fioretti B. LY294002 Inhibits Intermediate Conductance Calcium-Activated Potassium (KCa3.1) Current in Human Glioblastoma Cells. Front Physiol 2022; 12:790922. [PMID: 35069252 PMCID: PMC8782274 DOI: 10.3389/fphys.2021.790922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas (GBs) are among the most common tumors with high malignancy and invasiveness of the central nervous system. Several alterations in protein kinase and ion channel activity are involved to maintain the malignancy. Among them, phosphatidylinositol 3-kinase (PI3K) activity and intermediate conductance calcium-activated potassium (KCa3.1) current are involved in several aspects of GB biology. By using the electrophysiological approach and noise analysis, we observed that KCa3.1 channel activity is LY294002-sensitive and Wortmannin-resistant in accordance with the involvement of PI3K class IIβ (PI3KC2β). This modulation was observed also during the endogenous activation of KCa3.1 current with histamine. The principal action of PI3KC2β regulation was the reduction of open probability in intracellular free calcium saturating concentration. An explanation based on the “three-gate” model of the KCa3.1 channel by PI3KC2β was proposed. Based on the roles of KCa3.1 and PI3KC2β in GB biology, a therapeutic implication was suggested to prevent chemo- and radioresistance mechanisms.
Collapse
Affiliation(s)
- Concetta Caglioti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.,Department of Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Federico Palazzetti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.,Department of Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | | | | | | | - Roberta Russo
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Chiara Pennetta
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Belyashova AS, Galkin MV, Antipina NA, Pavlova GV, Golanov AV. Cell cultures in assessing radioresistance of glioblastomas. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:126-132. [PMID: 36252203 DOI: 10.17116/neiro202286051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To date, no modern methods of treatment allow overcoming malignant potential of glial neoplasms and significant increase of survival. Analysis of glioblastoma radioresistance using cancer cell cultures is one of the perspective directions, as radiotherapy is standard and available treatment method for these neoplasms. This review summarizes current studies identifying many factors of radioresistance of glial tumors, such as hypoxia, microenvironment and metabolic features of tumor, stem cells, internal heterogeneity of tumor, microRNA, features of cell cycle, DNA damage and reparation. We obtained data on involvement of various molecular pathways in development of radioresistance such as MEK/ERK, c-MYC, PI3K/Akt, PTEN, Wnt, JAK/STAT, Notch, etc. Changes in activity of RAD51 APC, FZD1, LEF1, TCF4, WISP1, p53 and many others are determined in radioresistant cells. Further study of radioresistance pathways will allow development of specific target aptamers and inhibitors.
Collapse
Affiliation(s)
| | - M V Galkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
29
|
Wang Y, Sun J, Yao N. Correlation of the AKT/mTOR signaling pathway with the clinicopathological features and prognosis of nasopharyngeal carcinoma. Eur J Histochem 2021; 65. [PMID: 34783234 PMCID: PMC8611413 DOI: 10.4081/ejh.2021.3304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
The primary aim of this study was to examine the correlation of the AKT/mTOR signaling pathway with the clinicopathological features and prognostic significance in nasopharyngeal carcinoma (NPC). The study tissues were collected from 285 patients with NPC and normal mucosal tissues were obtained from 289 individuals with normal nasopharynxes. Immunohistochemical staining was used to detected the expression of the AKT, mTOR, and p70 ribosomal S6 kinase (P70S6K) proteins. Follow-up was performed for between 8 and 60 months. Spearman’s rank correlation analysis was performed to evaluate the correlation of the expression of the AKT, mTOR, and P70S6K proteins in NPC tissues. Kaplan-Meier curves were plotted to show the survival of patients with NPC. A Cox proportional hazards model was used to explore the independent risk factors for prognosis. The expression of the AKT, mTOR, and P70S6K proteins in NPC tissues was higher than that in healthy nasopharyngeal mucosal tissues, and was correlated with T-staging, N-staging, clinical stage, distant metastasis, and differentiation. The positive expression of the AKT, mTOR, and P70S6K proteins was higher in patients with stage III/IV NPC, low differentiation, and metastasis. The survival rates of patients with NPC with AKT-positive, mTOR-positive, and P70S6K-positive expression were considerably lower than those without the expression of these proteins. Distant metastasis and the overexpression of the AKT, mTOR, and P70S6K proteins were independent risk factors for the prognosis of patients with NPC. The results obtained from this study indicated an association between the AKT/mTOR signaling pathway and the progression of NPC. The upregulation of the AKT/mTOR pathway in patients with NPC is a predictor of poor prognosis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong.
| | - Jie Sun
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong.
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong.
| |
Collapse
|
30
|
Togni L, Mascitti M, Sartini D, Campagna R, Pozzi V, Salvolini E, Offidani A, Santarelli A, Emanuelli M. Nicotinamide N-Methyltransferase in Head and Neck Tumors: A Comprehensive Review. Biomolecules 2021; 11:1594. [PMID: 34827592 PMCID: PMC8615955 DOI: 10.3390/biom11111594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
The head and neck tumors (HNT) are a heterogeneous group of diseases ranging from benign to malignant lesions, with distinctive molecular and clinical behaviors. Several studies have highlighted the presence of an altered metabolic phenotype in HNT, such as the upregulation of nicotinamide N-methyltransferase (NNMT). However, its biological effects have not been completely disclosed and the role of NNMT in cancer cell metabolism remains unclear. Therefore, this comprehensive review aims to evaluate the available literature regarding the biological, diagnostic, and prognostic role of NNMT in HNT. NNMT was shown to be significantly overexpressed in all of the evaluated HNT types. Moreover, its upregulation has been correlated with cancer cell migration and adverse clinical outcomes, such as high-pathological stage, lymph node metastasis, and locoregional recurrences. However, in oral squamous cell carcinoma (OSCC) these associations are still debated, and several studies have failed to demonstrate the prognostic significance of NNMT. The shRNA-mediated gene silencing efficiently suppressed the NNMT gene expression and exhibited a clear inhibitory effect on cell proliferation, promoting the expression of apoptosis-related proteins and modulating the cell cycle. NNMT could represent a new molecular biomarker and a new target of molecular-based therapy, although further studies on larger patient cohorts are needed to explore its biological role in HNT.
Collapse
Affiliation(s)
- Lucrezia Togni
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Marco Mascitti
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Davide Sartini
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Roberto Campagna
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Andrea Santarelli
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| |
Collapse
|
31
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors enhance radiosensitivity in cancer cell lines. Mol Biol Rep 2021; 48:1-14. [PMID: 34357550 DOI: 10.1007/s11033-021-06607-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Radiotherapy is one of the most common types of cancer treatment modalities. Radiation can affect both cancer and normal tissues, which limits the whole delivered dose. It is well documented that radiation activates phosphatidylinositol 3-kinase (PI3K) and AKT signaling pathway; hence, the inhibition of this pathway enhances the radiosensitivity of tumor cells. The mammalian target of rapamycin (mTOR) is a regulator that is involved in autophagy, cell growth, proliferation, and survival. CONCLUSION The inhibition of mTOR as a downstream mediator of the PI3K/AKT signaling pathway represents a vital option for more effective cancer treatments. The combination of PI3K/AKT/mTOR inhibitors with radiation can increase the radiosensitivity of malignant cells to radiation by autophagy activation. Therefore, this review aims to discuss the impact of such inhibitors on the cell response to radiation.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
33
|
Zou N, Zhang X, Li S, Li Y, Zhao Y, Yang X, Zhu S. Elevated HNF1A expression promotes radiation-resistance via driving PI3K/AKT signaling pathway in esophageal squamous cell carcinoma cells. J Cancer 2021; 12:5013-5024. [PMID: 34234870 PMCID: PMC8247383 DOI: 10.7150/jca.58023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: Radiotherapy is a major modality for treatment of local advanced esophageal squamous cell carcinoma (ESCC). Hepatocyte nuclear factor 1-alpha (HNF1A) is involved in regulation of tumor cell proliferation, apoptosis, cycle distribution, invasion metastasis and chemical resistance. The aim of this study was to investigate the effect of HNF1A on radiosensitivity of ESCC cells. Methods: In our study, HNF1A expression was verified from GEPIA in multiple types of cancer. The prognostic value of HNF1A in ESCC was obtained by TCGA database. In addition, the expression of HNF1A in ESCC cell lines was verified by western blot. Subsequently, lentiviruses were used to construct HNF1A overexpressed cell lines TE1 and KYSE150.Then, the roles of HNF1A on cell proliferation, invasion, apoptosis, cell cycle distribution and radiosensitivity were verified. Furthermore, the relationship between HNF1A and γH2AX were determined by western blot and immunofluorescence. We also detected the expression changes of key factors in PI3K/AKT pathway after overexpression of HNF1A. Results: The results showed that the overexpression of HNF1A promoted cell proliferation and invasion with or without irradiation (IR), and potently radiation-resistance ESCC cells with a sensitization enhancement ratio (SER) of 0.76 and 0.87. In addition, HNF1A regulated Cyclin D1 and CDK4 proteins to promote the transition from radiation-induced G0/G1 phase arrest to S phase, and coordinated BAX and BCL2 proteins to reduce the occurrence of radiation-induced apoptosis. It was worth noting that HNF1A might be involved in radiation-induced DNA damage repair by regulating γH2AX though PI3K/AKT signal pathway. Conclusion: Our study preliminarily suggested that HNF1A was associated with the progression and radiosensitivity of ESCC cells, and it might reduce the radiosensitivity of ESCC cells by promoting cell proliferation, releasing G0/G1 phase arrest, reducing apoptosis, and regulating the expression of γH2AX protein though driving PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Naiyi Zou
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xueyuan Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shuguang Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Youmei Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Zhao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xingxiao Yang
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shuchai Zhu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
34
|
Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A 2021; 118:2003193118. [PMID: 33468664 DOI: 10.1073/pnas.2003193118] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have shown previously that phosphorylation of Mdm2 by ATM and c-Abl regulates Mdm2-p53 signaling and alters the effects of DNA damage in mice, including bone marrow failure and tumorigenesis induced by ionizing radiation. Here, we examine the physiological effects of Mdm2 phosphorylation by Akt, another DNA damage effector kinase. Surprisingly, Akt phosphorylation of Mdm2 does not alter the p53-mediated effects of ionizing radiation in cells or mice but regulates the p53 response to oxidative stress. Akt phosphorylation of Mdm2 serine residue 183 increases nuclear Mdm2 stability, decreases p53 levels, and prevents senescence in primary cells exposed to reactive oxidative species (ROS). Using multiple mouse models of ROS-induced cancer, we show that Mdm2 phosphorylation by Akt reduces senescence to promote KrasG12D-driven lung cancers and carcinogen-induced papilloma and hepatocellular carcinomas. Collectively, we document a unique physiologic role for Akt-Mdm2-p53 signaling in regulating cell growth and tumorigenesis in response to oxidative stress.
Collapse
|
35
|
Zhu M, Ye C, Wang J, Yang G, Ying X. Activation of COL11A1 by PRRX1 promotes tumor progression and radioresistance in ovarian cancer. Int J Radiat Biol 2021; 97:958-967. [PMID: 33970764 DOI: 10.1080/09553002.2021.1928780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Although radiotherapy is a common treatment option for all kinds of cancer patients, including ovarian cancer, a major obstacle limiting its application in the development of resistance. Therefore, it is urgently needed to clarify the mechanism of radiosensitivity modulation. MATERIALS AND METHODS We obtained open datasets and analyzed the expression of collagen type XI alpha 1 (COL11A1) in ovarian cancer patients with different stages. Meanwhile, the correlation of COL11A1 and survival outcomes is determined by Kaplan-Meier analysis. The role of COL11A1 in cell proliferation was observed in an in vitro knockdown system. SKOV3 radioresistant cells were established to determine the role of COL11A1 on radioresistant in ovarian cancer. RESULTS AND DISCUSSION COL11A1 were highly enriched in late-stage ovarian cancer tumor tissues and negatively correlated with survival outcomes in ovarian cancer. The functional analysis found that COL11A1 promoted ovarian cancer cell proliferation in vitro. Importantly, COL11A1 decreased radiosensitivity in ovarian cancer by AKT activation. Paired related homeobox 1 (PRRX1) acted as an upstream transcription factor to regulate COL11A1 expression in ovarian cancer. Increased COL11A1 expression is related to low survival outcomes and radiosensitivity in ovarian cancer. CONCLUSIONS Targeting COL11A1 is a promising strategy for improving radiotherapy efficiency.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxia Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Guangxia Yang
- Department of Rheumatology, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Lai C, Zhang J, Tan Z, Shen LF, Zhou RR, Zhang YY. Maf1 suppression of ATF5-dependent mitochondrial unfolded protein response contributes to rapamycin-induced radio-sensitivity in lung cancer cell line A549. Aging (Albany NY) 2021; 13:7300-7313. [PMID: 33640883 PMCID: PMC7993702 DOI: 10.18632/aging.202584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
mTOR is well known to promote tumor growth but its roles in enhancing chemotherapy and radiotherapy have not been well studied. mTOR inhibition by rapamycin can sensitize cancer cells to radiotherapy. Here we show that Maf1 is required for rapamycin to increase radio-sensitivity in A549 lung cancer cells. In response to ionizing radiation (IR), Maf1 is inhibited by Akt-dependent re-phosphorylation, which activates mitochondrial unfolded protein response (UPRmt) through ATF5. Rapamycin suppresses IR-induced Maf1 re-phosphorylation and UPRmt activation in A549 cells, resulting in increased sensitivity to IR-mediated cytotoxicity. Consistently, Maf1 knockdown activates ATF5-transcription of mtHSP70 and HSP60, enhances mitochondrial membrane potential, reduces intracellular ROS levels and dampens rapamycin's effect on increasing IR-mediated cytotoxicity. In addition, Maf1 overexpression suppresses ethidium bromide-induced UPRmt and enhances IR-mediated cytotoxicity. Supporting our cell-based studies, elevated expression of UPRmt makers (mtHSP70 and HSP60) are associated with poor prognosis in patients with lung adenocarcinoma (LAUD). Together, our study reveals a novel role of Maf1-UPRmt axis in mediating rapamycin's enhancing effect on IR sensitivity in A549 lung cancer cells.
Collapse
Affiliation(s)
- Chen Lai
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha 410008, Hunan, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhaohua Tan
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Liang F Shen
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Rong R Zhou
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ying Y Zhang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
37
|
PTEN inhibitor bpV(HOpic) confers protection against ionizing radiation. Sci Rep 2021; 11:1720. [PMID: 33462262 PMCID: PMC7814022 DOI: 10.1038/s41598-020-80754-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Exposure to Ionizing radiation (IR) poses a severe threat to human health. Therefore, there is an urgent need to develop potent and safe radioprotective agents for radio-nuclear emergencies. Phosphatidylinositol-3-kinase (PI3K) mediates its cytoprotective signaling against IR by phosphorylating membrane phospholipids to phosphatidylinositol 3,4,5 triphosphate, PIP3, that serve as a docking site for AKT. Phosphatase and Tensin Homolog on chromosome 10 (PTEN) antagonizes PI3K activity by dephosphorylating PIP3, thus suppressing PI3K/AKT signaling that could prevent IR induced cytotoxicity. The current study was undertaken to investigate the radioprotective potential of PTEN inhibitor (PTENi), bpV(HOpic). The cell cytotoxicity, proliferation index, and clonogenic survival assays were performed for assessing the radioprotective potential of bpV(HOpic). A safe dose of bpV(HOpic) was shown to be radioprotective in three radiosensitive tissue origin cells. Further, bpV(HOpic) significantly reduced the IR-induced apoptosis and associated pro-death signaling. A faster and better DNA repair kinetics was also observed in bpV(HOpic) pretreated cells exposed to IR. Additionally, bpV(HOpic) decreased the IR-induced oxidative stress and significantly enhanced the antioxidant defense mechanism in cells. The radioprotective effect of bpV(HOpic) was found to be AKT dependant and primarily regulated by the enhanced glycolysis and associated signaling. Furthermore, this in-vitro observation was verified in-vivo, where administration of bpV(HOpic) in C57BL/6 mice resulted in AKT activation and conferred survival advantage against IR-induced mortality. These results imply that bpV(HOpic) ameliorates IR-induced oxidative stress and cell death by inducing AKT signaling mediated antioxidant defense system and DNA repair pathways, thus strengthening its potential to be used as a radiation countermeasure.
Collapse
|
38
|
Emisoglu-Kulahli H, Gul S, Morgil H, Ozcan O, Aygenli F, Selvi S, Kavakli IH, Ozturk N. Transcriptome analysis of the circadian clock gene BMAL1 deletion with opposite carcinogenic effects. Funct Integr Genomics 2021; 21:1-16. [PMID: 33111200 DOI: 10.1007/s10142-020-00757-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
We have previously reported that the deletion of BMAL1 gene has opposite effects in respect to its contribution to the pathways that are effective in the multistage carcinogenesis process. BMAL1 deletion sensitized nearly normal breast epithelial (MCF10A) and invasive breast cancer cells (MDA-MB-231) to cisplatin- and doxorubicin-induced apoptosis, while this deletion also aggravated the invasive potential of MDA-MB-231 cells. However, the mechanistic relationship of the seemingly opposite contribution of BMAL1 deletion to carcinogenesis process is not known at genome-wide level. In this study, an RNA-seq approach was taken to uncover the differentially expressed genes (DEGs) and pathways after treating BMAL1 knockout (KO) or wild-type (WT) MDA-MB-231 cells with cisplatin and doxorubicin to initiate apoptosis. Gene set enrichment analysis with the DEGs demonstrated that enrichment in multiple genes/pathways contributes to sensitization to cisplatin- or doxorubicin-induced apoptosis in BMAL1-dependent manner. Additionally, our DEG analysis suggested that non-coding transcript RNA (such as lncRNA and processed pseudogenes) may have role in cisplatin- or doxorubicin-induced apoptosis. Protein-protein interaction network obtained from common DEGs in cisplatin and doxorubicin treatments revealed that GSK3β, NACC1, and EGFR are the principal genes regulating the response of the KO cells. Moreover, the analysis of DEGs among untreated BMAL1 KO and WT cells revealed that epithelial-mesenchymal transition genes are up-regulated in KO cells. As a negative control, we have also analyzed the DEGs following treatment with an endoplasmic reticulum (ER) stress-inducing agent, tunicamycin, which was affected by BMAL1 deletion minimally. Collectively, the present study suggests that BMAL1 regulates many genes/pathways of which the alteration in BMAL1 KO cells may shed light on pleotropic phenotype observed.
Collapse
Affiliation(s)
- Handan Emisoglu-Kulahli
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Seref Gul
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Hande Morgil
- Department of Biology, Istanbul University, Istanbul, Turkey
- Istanbul University Centre for Plant and Herbal Products Research-Development, 34126, Istanbul, Turkey
| | - Onur Ozcan
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Fatih Aygenli
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Saba Selvi
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
39
|
USP46 Inhibits Cell Proliferation in Lung Cancer through PHLPP1/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2509529. [PMID: 33029497 PMCID: PMC7532402 DOI: 10.1155/2020/2509529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that ubiquitin-specific protease 46 (USP46) is a tumor suppressor in colon cancer and renal cell carcinoma. However, its specific role in other cancers is still poorly understood. This study is aimed at investigating the role of USP46 in lung cancer tumorigenesis and identifying its underlying mechanisms. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were used to measure the expression levels of USP46 and PHLPP1 in lung cancer tissue and adjacent normal tissue from patients with lung cancer. We examined the ability of USP46 to regulate cell proliferation in lung cancer cells via cell proliferation assay, radiation assay, genetic overexpression and knockdown, and chemical inhibition of relevant genes. We investigated the underlying mechanisms in multiple lung cancer cell line models by coimmunoprecipitation and ubiquitination assays. In this study, we identified a strong downregulation of the expressions of USP46 and PHLPP1 in lung cancer tissues relative to normal adjacent tissues. USP46 was further shown to inhibit lung cancer cell proliferation under conditions of normal growth and during radiation-induced DNA damage by antagonizing the ubiquitination of PHLPP1 resulting in the inhibition of AKT signaling. Exposure to radiation and AKT inhibition significantly reversed the effect of USP46 siRNA on lung cancer cell proliferation. USP46 is downregulated in lung cancer and suppresses the proliferation of lung cancer cells by inhibiting the PHLPP1/AKT pathway. AKT inhibition slows the proliferation of lung cancer cells that have been downregulated by USP46 and exposed to radiation. This suggests a potential therapeutic avenue for USP46-downregulated lung cancer through a combination of radiation and AKT inhibitor treatment.
Collapse
|
40
|
Ghasemi Z, Tahmasebi-Birgani MJ, Ghafari Novin A, Motlagh PE, Teimoori A, Ghadiri A, Pourghadamyari H, Sarli A, Khanbabaei H. Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells. Life Sci 2020; 257:118087. [PMID: 32702442 DOI: 10.1016/j.lfs.2020.118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
AIMS Recent studies suggest that direct exposure of cells to fractionated radiotherapy might induce radioresistance. However, the effects of fractionated radiotherapy on the non-irradiated bystander cells remain unclear. We hypothesized that fractionated radiotherapy could enhance radioresistance and proliferation of bystander cells. MAIN METHODS Human tumor cell lines, including A549 and HT29 were irradiated (2 Gy per day). The irradiated cells (either A549 or HT29) were co-cultured with non-irradiated cells of the same line using transwell co-culture system. Tumor cell proliferation, radioresistance and apoptosis were measured using MTT assay, clonogenic survival assay and Annexin-V in bystander cells, respectively. In addition, activation of Chk1 (Ser 317), Chk2 (Thr 68) and Akt (Ser473) were measured via western blot. KEY FINDINGS Irradiated HT29 cells induced conventional bystander effects detected as modulation of clonogenic survival parameters (decreased area under curve, D10 and ED50 and increased α) and proliferation in recipient neighbors. While, irradiated A549 cells significantly enhanced the radioresistance and proliferation of bystander cells. These changes were accompanied with enhanced activation of Chk1, Chk2 and Akt in non-irradiated bystander A549 cells. Moreover, both bystander effects (damaging and protective) were mediated through secreted factors. SIGNIFICANCE These findings suggest that fractionated radiotherapy could promote proliferation and radioresistance of bystander cells probably through survival and proliferation pathways.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Molecular Genetics, Faculty of Modern Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Arefeh Ghafari Novin
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Esmaili Motlagh
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolazim Sarli
- Department of Medical Genetics, Medical Science School, Tarbiat Modares University, Tehran, Iran
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
41
|
Ali MY, Oliva CR, Noman ASM, Allen BG, Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM, Griguer CE. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel) 2020; 12:E2511. [PMID: 32899427 PMCID: PMC7564557 DOI: 10.3390/cancers12092511] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Abu Shadat M. Noman
- Department of Biochemistry and Molecular Biology, The University of Chittagong, Chittagong 4331, Bangladesh;
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bryan G. Allen
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Prabhat C. Goswami
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Douglas R. Spitz
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
42
|
Yao Y, Sun S, Cao M, Mao M, He J, Gai Q, Qin Y, Yao X, Lu H, Chen F, Wang W, Luo M, Zhang H, Huang H, Ju J, Bian XW, Wang Y. Grincamycin B Functions as a Potent Inhibitor for Glioblastoma Stem Cell via Targeting RHOA and PI3K/AKT. ACS Chem Neurosci 2020; 11:2256-2265. [PMID: 32584547 DOI: 10.1021/acschemneuro.0c00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of glioma, and the overall survival time of patients with GBM is usually less than 14 months. Therefore, it is urgent to find new and effective medicine for GBM. Recently, marine natural products have been shown to exhibit strong inhibitory effects on cancer cells, providing a new avenue for exploring novel drugs for GBM treatment. In this study, we investigated the inhibitory effect of the Grincamycin (GCN) B-F, newly isolated from marine-derived Streptomyces Lusitanus SCSIO LR32, on GBM cells, and evaluated the mechanism of GCN B on GBM. The results, for the first time, showed that GCN B acted as a potent inhibitor to suppress growth and invasion of two human GBM cell lines U251 and 091214 in vitro. In addition, GCN B could effectively target GSCs in GBM evidenced by attenuated formation of tumor spheres and decrease of several markers of GSCs. Furthermore, we performed gene expression microarray followed by Signal-Net analysis. The result revealed that RHOA and PI3K/AKT axis played critical roles for a GCN B-mediated inhibitory effect on GSCs. Altogether, our findings highlighted GCN B as a promising inhibitor for GSCs via targeting RHOA and PI3K/AKT.
Collapse
Affiliation(s)
- Yueliang Yao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Si Sun
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mianfu Cao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Min Mao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiang He
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qujing Gai
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Qin
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxue Yao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huimin Lu
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fanglin Chen
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenying Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Min Luo
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
| | - Hua Zhang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiu-Wu Bian
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
43
|
Reda M, Bagley AF, Zaidan HY, Yantasee W. Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiother Oncol 2020; 150:225-235. [PMID: 32598976 DOI: 10.1016/j.radonc.2020.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Radiation therapy is a cornerstone of modern cancer therapy alongside surgery, chemotherapy, and immunotherapy, with over half of all cancer patients receiving radiation therapy as part of their treatment regimen. Development of novel radiation sensitizers that can improve the therapeutic window of radiation therapy are sought after, particularly for tumors at an elevated risk of local and regional recurrence such as locally-advanced lung, head and neck, and gastrointestinal tumors. This review discusses clinical strategies to enhance radiotherapy efficacy and decrease toxicity, hence, increasing the overall therapeutic window. A focus is given to the molecular targets that have been identified and their associated mechanisms of action in enhancing radiotherapy. Examples include cell survival and proliferation signaling such as the EGFR and PI3K/AKT/mTOR pathways, DNA repair genes including PARP and ATM/ATR, angiogenic growth factors, epigenetic regulators, and immune checkpoint proteins. By manipulating various mechanisms of tumor resistance to ionizing radiation (IR), targeted therapies hold significant value to increase the therapeutic window of radiotherapy. Further, the use of novel nanoparticles to enhance radiotherapy is also reviewed, including nanoparticle delivery of chemotherapies, metallic (high-Z) nanoparticles, and nanoparticle delivery of targeted therapies - all of which may improve the therapeutic window of radiotherapy by enhancing the tumor response to IR or reducing normal tissue toxicity.
Collapse
Affiliation(s)
- Moataz Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States
| | - Alexander F Bagley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States.
| |
Collapse
|
44
|
Adaku N, Park HB, Spakowicz DJ, Tiwari MK, Strobel SA, Crawford JM, Rogers FA. A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma. JOURNAL OF NATURAL PRODUCTS 2020; 83:1899-1908. [PMID: 32407116 DOI: 10.1021/acs.jnatprod.0c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disruption of the tumor suppressor PTEN, either at the protein or genomic level, plays an important role in human cancer development. The high frequency of PTEN deficiency reported across several cancer subtypes positions therapeutic approaches that exploit PTEN loss-of-function with the ability to significantly impact the treatment strategies of a large patient population. Here, we report that an endophytic fungus isolated from a medicinal plant produces an inhibitor of DNA double-strand-break repair. Furthermore, the novel alkaloid product, which we have named irrepairzepine (1), demonstrated synthetic lethal targeting in PTEN-deficient glioblastoma cells. Our results uncover a new therapeutic lead for PTEN-deficient cancers and an important molecular tool toward enhancing the efficacy of current cancer treatments.
Collapse
Affiliation(s)
- Nneoma Adaku
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
45
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
46
|
Wanigasooriya K, Tyler R, Barros-Silva JD, Sinha Y, Ismail T, Beggs AD. Radiosensitising Cancer Using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or Mammalian Target of Rapamycin (mTOR) Inhibitors. Cancers (Basel) 2020; 12:E1278. [PMID: 32443649 PMCID: PMC7281073 DOI: 10.3390/cancers12051278] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is routinely used as a neoadjuvant, adjuvant or palliative treatment in various cancers. There is significant variation in clinical response to radiotherapy with or without traditional chemotherapy. Patients with a good response to radiotherapy demonstrate better clinical outcomes universally across different cancers. The PI3K/AKT/mTOR pathway upregulation has been linked to radiotherapy resistance. We reviewed the current literature exploring the role of inhibiting targets along this pathway, in enhancing radiotherapy response. We identified several studies using in vitro cancer cell lines, in vivo tumour xenografts and a few Phase I/II clinical trials. Most of the current evidence in this area comes from glioblastoma multiforme, non-small cell lung cancer, head and neck cancer, colorectal cancer, and prostate cancer. The biological basis for radiosensitivity following pathway inhibition was through inhibited DNA double strand break repair, inhibited cell proliferation, enhanced apoptosis and autophagy as well as tumour microenvironment changes. Dual PI3K/mTOR inhibition consistently demonstrated radiosensitisation of all types of cancer cells. Single pathway component inhibitors and other inhibitor combinations yielded variable outcomes especially within early clinical trials. There is ample evidence from preclinical studies to suggest that direct pharmacological inhibition of the PI3K/AKT/mTOR pathway components can radiosensitise different types of cancer cells. We recommend that future in vitro and in vivo research in this field should focus on dual PI3K/mTOR inhibitors. Early clinical trials are needed to assess the feasibility and efficacy of these dual inhibitors in combination with radiotherapy in brain, lung, head and neck, breast, prostate and rectal cancer patients.
Collapse
Affiliation(s)
- Kasun Wanigasooriya
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Robert Tyler
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Joao D. Barros-Silva
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
| | - Yashashwi Sinha
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Tariq Ismail
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Andrew D. Beggs
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| |
Collapse
|
47
|
Im H, Lee J, Ryu KY, Yi JY. Integrin αvβ3-Akt signalling plays a role in radioresistance of melanoma. Exp Dermatol 2020; 29:562-569. [PMID: 32298492 DOI: 10.1111/exd.14102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is a deadly type of skin cancer that is particularly difficult to treat owing to its resistance to radiation therapy. Here, we attempted to determine the key proteins responsible for melanoma radioresistance, with the aim of improving disease response to radiation therapy. Two melanoma cell lines, SK-Mel5 and SK-Mel28, with different radiosensitivities were analysed via RNA-Seq (Quant-Seq) and target proteins with higher abundance in the more radioresistant cell line, SK-Mel28, identified. Among these proteins, integrin αvβ3, a well-known molecule in cell adhesion, was selected for analysis. Treatment of SK-Mel28 cells with cilengitide, an integrin αvβ3 inhibitor, as well as γ-irradiation resulted in more significant cell death than γ-irradiation alone. In addition, Akt, a downstream signal transducer of integrin αvβ3, showed high basic activation in SK-Mel28 and was significantly decreased upon co-treatment with cilengitide and γ-irradiation. MK-2206, an Akt inhibitor, exerted similar effects on the SK-Mel28 cell line following γ-irradiation. Our results collectively demonstrate that the integrin αvβ3-Akt signalling pathway contributes to radioresistance in SK-Mel28 cells, which may be manipulated to improve therapeutic options for melanoma.
Collapse
Affiliation(s)
- Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Life Science, University of Seoul, Seoul, Korea
| | - Jeeyong Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
48
|
Komakech A, Im JH, Gwak HS, Lee KY, Kim JH, Yoo BC, Cheong H, Park JB, Kwon JW, Shin SH, Yoo H. Dexamethasone Interferes with Autophagy and Affects Cell Survival in Irradiated Malignant Glioma Cells. J Korean Neurosurg Soc 2020; 63:566-578. [PMID: 32272509 PMCID: PMC7477145 DOI: 10.3340/jkns.2019.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/08/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Radiation is known to induce autophagy in malignant glioma cells whether it is cytocidal or cytoprotective. Dexamethasone is frequently used to reduce tumor-associated brain edema, especially during radiation therapy. The purpose of the study was to determine whether and how dexamethasone affects autophagy in irradiated malignant glioma cells and to identify possible intervening molecular pathways. METHODS We prepared p53 mutant U373 and LN229 glioma cell lines, which varied by phosphatase and tensin homolog (PTEN) mutational status and were used to make U373 stable transfected cells expressing GFP-LC3 protein. After performing cell survival assay after irradiation, the IC50 radiation dose was determined. Dexamethasone dose (10 μM) was determined from the literature and added to the glioma cells 24 hours before the irradiation. The effect of adding dexamethasone was evaluated by cell survival assay or clonogenic assay and cell cycle analysis. Measurement of autophagy was visualized by western blot of LC3-I/LC3-II and quantified by the GFP-LC3 punctuated pattern under fluorescence microscopy and acridine orange staining for acidic vesicle organelles by flow cytometry. RESULTS Dexamethasone increased cell survival in both U373 and LN229 cells after irradiation. It interfered with autophagy after irradiation differently depending on the PTEN mutational status : the autophagy decreased in U373 (PTEN-mutated) cells but increased in LN229 (PTEN wild-type) cells. Inhibition of protein kinase B (AKT) phosphorylation after irradiation by LY294002 reversed the dexamethasone-induced decrease of autophagy and cell death in U373 cells but provoked no effect on both autophagy and cell survival in LN229 cells. After ATG5 knockdown, radiation-induced autophagy decreased and the effect of dexamethasone also diminished in both cell lines. The diminished autophagy resulted in a partial reversal of dexamethasone protection from cell death after irradiation in U373 cells; however, no significant change was observed in surviving fraction LN229 cells. CONCLUSION Dexamethasone increased cell survival in p53 mutated malignant glioma cells and increased autophagy in PTEN-mutant malignant glioma cell but not in PTEN-wildtype cell. The difference of autophagy response could be mediated though the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Alfred Komakech
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ji-Hye Im
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Byong Chul Yoo
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Heesun Cheong
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ji Woong Kwon
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| |
Collapse
|
49
|
Circumventing AKT-Associated Radioresistance in Oral Cancer by Novel Nanoparticle-Encapsulated Capivasertib. Cells 2020; 9:cells9030533. [PMID: 32106632 PMCID: PMC7140405 DOI: 10.3390/cells9030533] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Development of radioresistance in oral squamous cell carcinoma (OSCC) remains a significant problem in cancer treatment, contributing to the lack of improvement in survival trends in recent decades. Effective strategies to overcome radioresistance are necessary to improve the therapeutic outcomes of radiotherapy in OSCC patients. METHODS Cells and xenograft tumors were irradiated using the Small Animal Radiation Research Platform. AKT inhibitor capivasertib (AZD5363) was encapsulated into cathepsin B-responsible nanoparticles (NPs) for tumor-specific delivery. Cell viability was measured by alamarBlue, cell growth was determined by colony formation and 3D culture, and apoptosis was assessed by flow cytometry with the staining of Fluorescein isothiocyanate (FITC) Annexin V and PI. An orthotopic tongue tumor model was used to evaluate the in vivo therapeutic effects. The molecular changes induced by the treatments were assessed by Western blotting and immunohistochemistry. RESULTS We show that upregulation of AKT signaling is the critical mechanism for radioresistance in OSCC cells, and AKT inactivation by a selective and potent AKT inhibitor capivasertib results in radiosensitivity. Moreover, relative to irradiation (IR) alone, IR combined with the delivery of capivasertib in association with tumor-seeking NPs greatly enhanced tumor cell repression in 3D cell cultures and OSCC tumor shrinkage in an orthotopic mouse model. CONCLUSIONS These data indicate that capivasertib is a potent agent that sensitizes radioresistant OSCC cells to IR and is a promising strategy to overcome failure of radiotherapy in OSCC patients.
Collapse
|
50
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|