1
|
James B, Tran LT, Bolst D, Prokopovich DA, Lerch M, Petasecca M, Guatelli S, Povoli M, Kok A, Petringa G, Cirrone GAP, Jackson M, Rosenfeld AB. In-field and out-of-field microdosimetric characterisation of a 62 MeV proton beam at CATANA. Med Phys 2021; 48:4532-4541. [PMID: 33908049 DOI: 10.1002/mp.14905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE A 5 and 10 μm thin silicon on insulator (SOI) 3D mushroom microdosimeter was used to characterize both the in-field and out-of-field of a 62 MeV proton beam. METHODS The SOI mushroom microdosimeter consisted of an array of cylindrical sensitive volumes (SVs), developed by the Centre for Medical Radiation Physics, University of Wollongong, was irradiated with 62 MeV protons at the CATANA (Centro di AdroTerapia Applicazioni Nucleari Avanzate) facility in Catania, Italy, a facility dedicated to the radiation treatment of ocular melanomas. Dose mean lineal energy, ( y D ¯ ), values were obtained at various depths in PMMA along a pristine and spread out Bragg peak (SOBP). The measured microdosimetric spectra at each position were then used as inputs into the modified Microdosimetric Kinetic Model (MKM) to derive the RBE for absorbed dose in a middle of the SOBP 2Gy (RBED ). Microdosimetric spectra were obtained with both the 5 and 10 μm 3D SOI microdosimeters, with a focus on the distal part of the BP. The in-field and out-of-field measurement configurations along the Bragg curve were modeled in Geant4 for comparison with experimental results. Lateral out-of-field measurements were performed to study secondary particles' contribution to normal tissue's dose, up to 12 mm from the edge of the beam field, and quality factor and dose equivalent results were obtained. RESULTS Comparison between experimental and simulation results showed good agreement between one another for both the pristine and SOBP beams in terms of y D ¯ and RBED. Though a small discrepancy between experiment and simulation was seen at the entrance of the Bragg curve, where experimental results were slightly lower than Geant4. The dose equivalent value measured 12 mm from the edge of the target volume was 1.27 ± 0.15 mSv/Gy with a Q ¯ value of 2.52 ± 0.30, both of which agree within uncertainty with Geant4 simulation. CONCLUSIONS These results demonstrate that SOI microdosimeters are an effective tool to predict RBED in-field as well as dose equivalent monitoring out-of-field to provide insight to probability of second cancer generation.
Collapse
Affiliation(s)
- Benjamin James
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Linh T Tran
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - David Bolst
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dale A Prokopovich
- NSTLI Nuclear Stewardship, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia
| | - Michael Lerch
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Susanna Guatelli
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | - Michael Jackson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
2
|
Vernimmen FJ, Fredericks S, Wallace ND, Fitzgerald AP. Long-Term Follow-up of Patients Treated at a Single Institution Using a Passively Scattered Proton Beam; Observations Around the Occurrence of Second Malignancies. Int J Radiat Oncol Biol Phys 2019; 103:680-685. [DOI: 10.1016/j.ijrobp.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/01/2018] [Accepted: 10/19/2018] [Indexed: 02/01/2023]
|
3
|
Orbital Extranodal Marginal Zone Lymphoma Following Radiotherapy: A Report of 2 Cases. Ophthalmic Plast Reconstr Surg 2018; 34:443-448. [DOI: 10.1097/iop.0000000000001043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Singh V, Badiger N, Korkut T. Gamma exposure buildup factors and neutron total cross section of ceramic hosts for high level radioactive wastes. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Lee S, Lee C, Shin EH, Cho S, Kim DH, Han Y, Choi DH, Ye SJ, Kim JS. MEASUREMENT OF NEUTRON AMBIENT DOSE EQUIVALENT IN PROTON RADIOTHERAPY WITH LINE-SCANNING AND WOBBLING MODE TREATMENT SYSTEM. RADIATION PROTECTION DOSIMETRY 2017; 177:382-388. [PMID: 28444374 DOI: 10.1093/rpd/ncx056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The primary objective of this study was to measure secondary neutron dose during proton therapy using a detector that covers the entire neutron energy range produced in proton therapy. We analyzed and compared the neutron dose during proton treatment with passive scattering and line scanning. The neutron ambient dose equivalents were measured with a 190 MeV wobbling and line-scanning proton beam. The center of a plastic water phantom (30 × 30 × 60 cm3) was placed at the isocenter. A Wide-Energy Neutron Detection Instrument (WENDI-2) was located 1m from the isocenter at four different angles (0°, 45°, 90° and 135°). Both wobbling and line-scanning modes of a multipurpose and pencil beam scanning dedicated nozzles were used to obtain a spread-out Bragg peak with 10-cm-width for the measurements. The ambient dose equivalent H*(10) value was normalized by the proton therapeutic dose at the isocenter. For wobbling mode and line-scanning mode, the highest H*(10) values were 1.972 and 0.099 mSv/Gy, respectively. We successfully measured the neutron ambient dose equivalents at six positions generated by a 190 MeV proton beam using wobbling and line-scanning mode with the WENDI-2. These reference data could be used for neutron dose reduction methods and other analysis for advanced proton treatment in the near future.
Collapse
Affiliation(s)
- Sangmin Lee
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea
| | - Chaeyeong Lee
- Department of Radiological Science, Yonsei University, Wonju 26493, Republic of Korea
| | - Eun Hyuk Shin
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungkoo Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dae-Hyun Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Measurement and simulation of secondary neutrons from uniform scanning proton beams in proton radiotherapy. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Farah J, Mares V, Romero-Expósito M, Trinkl S, Domingo C, Dufek V, Klodowska M, Kubancak J, Knežević Ž, Liszka M, Majer M, Miljanić S, Ploc O, Schinner K, Stolarczyk L, Trompier F, Wielunski M, Olko P, Harrison RM. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med Phys 2015; 42:2572-84. [DOI: 10.1118/1.4916667] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
8
|
Jakubowska E, Zielczyński M, Golnik N, Gryziński MA, Krzemiński Ł. A ring-shaped recombination chamber for hadron therapy dosimetry. RADIATION PROTECTION DOSIMETRY 2014; 161:201-204. [PMID: 24430949 DOI: 10.1093/rpd/nct355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An innovative recombination chamber has been designed for estimation of stray radiation doses and quality factors in hadron therapy. The chamber allows for determination of absorbed dose and recombination index of radiation quality in phantoms at small distances from simulated organs. The chamber body and electrodes are ring shaped, so the beam may be directed through the empty centre of the ring. The ionisation of the filling gas is caused by secondary or scattered radiation and can be related to the dose absorbed in the tissues close to the irradiated target volume.
Collapse
Affiliation(s)
- E Jakubowska
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Św. A. Boboli 8, Warsaw 02-525, Poland
| | - M Zielczyński
- National Centre for Nuclear Research, A. Sołtana 7, Otwock 05-400, Poland
| | - N Golnik
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Św. A. Boboli 8, Warsaw 02-525, Poland
| | - M A Gryziński
- National Centre for Nuclear Research, A. Sołtana 7, Otwock 05-400, Poland
| | - Ł Krzemiński
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Św. A. Boboli 8, Warsaw 02-525, Poland
| |
Collapse
|
9
|
Farah J, Martinetti F, Sayah R, Lacoste V, Donadille L, Trompier F, Nauraye C, Marzi LD, Vabre I, Delacroix S, Hérault J, Clairand I. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations. Phys Med Biol 2014; 59:2747-65. [DOI: 10.1088/0031-9155/59/11/2747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|