1
|
Buck S, Pekarek L, Caliskan N. POTATO: Automated pipeline for batch analysis of optical tweezers data. Biophys J 2022; 121:2830-2839. [PMID: 35778838 PMCID: PMC9388390 DOI: 10.1016/j.bpj.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Optical tweezers are a single-molecule technique that allows probing of intra- and intermolecular interactions that govern complex biological processes involving molecular motors, protein-nucleic acid interactions, and protein/RNA folding. Recent developments in instrumentation eased and accelerated optical tweezers data acquisition, but analysis of the data remains challenging. Here, to enable high-throughput data analysis, we developed an automated python-based analysis pipeline called POTATO (practical optical tweezers analysis tool). POTATO automatically processes the high-frequency raw data generated by force-ramp experiments and identifies (un)folding events using predefined parameters. After segmentation of the force-distance trajectories at the identified (un)folding events, sections of the curve can be fitted independently to a worm-like chain and freely jointed chain models, and the work applied on the molecule can be calculated by numerical integration. Furthermore, the tool allows plotting of constant force data and fitting of the Gaussian distance distribution over time. All these features are wrapped in a user-friendly graphical interface, which allows researchers without programming knowledge to perform sophisticated data analysis.
Collapse
Affiliation(s)
- Stefan Buck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Lukas Pekarek
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany; Medical Faculty, Julius-Maximilians University Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
4
|
García-Massó X, Huber MC, Friedmann J, Gonzalez LM, Schiller SM, Toca-Herrera JL. Automated detection of protein unfolding events in atomic force microscopy force curves. Microsc Res Tech 2016; 79:1105-1111. [DOI: 10.1002/jemt.22764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xavier García-Massó
- Department of Teaching Music, Arts and Body Expression; University of Valencia; Valencia Spain
| | - Matthias C. Huber
- Center for Biosystems Analysis; Habsburger Str. 49, Albert-Ludwigs-University Freiburg Freiburg 79104 Germany
- Freiburg Institute for Advanced Studies; Alberstr. 19 Freiburg im Breisgau 79104 Germany
| | - Jacqueline. Friedmann
- Institute for Biophysics, Department of Nanobiotechnology; University of Natural Resources and Life Sciences; Vienna Austria
| | - Luis M. Gonzalez
- Department of Physical Education and Sport; University of Valencia; Valencia Spain
| | - Stefan M. Schiller
- Center for Biosystems Analysis; Habsburger Str. 49, Albert-Ludwigs-University Freiburg Freiburg 79104 Germany
- Freiburg Institute for Advanced Studies; Alberstr. 19 Freiburg im Breisgau 79104 Germany
| | - José L. Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology; University of Natural Resources and Life Sciences; Vienna Austria
| |
Collapse
|
5
|
Benítez R, Bolós VJ. Searching events in AFM force-extension curves: A wavelet approach. Microsc Res Tech 2016; 80:153-159. [DOI: 10.1002/jemt.22720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022]
Affiliation(s)
- R. Benítez
- Dpto. Matemáticas; Centro Universitario de Plasencia, Universidad de Extremadura; Avda. Virgen del Puerto 2 Plasencia (Cáceres) 10600 Spain
| | - V. J. Bolós
- Dpto. Matemáticas para la Economía y la Empresa, Facultad de Economía; Universidad de Valencia; Avda. Tarongers s/n Valencia 46022 Spain
| |
Collapse
|
6
|
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 2015; 6:7093. [PMID: 25963832 PMCID: PMC4432583 DOI: 10.1038/ncomms8093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the open state, but S3 in the closed state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. Cyclic nucleotide gated channels are activated after binding cyclic nucleotides. Here, using single molecule force spectroscopy, the authors reveal that cyclic nucleotide binding causes conformational changes and tighter coupling of the S4 helix to the pore forming domain.
Collapse
|
7
|
Scholl ZN, Marszalek PE. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions. Ultramicroscopy 2013; 136:7-14. [PMID: 24001740 DOI: 10.1016/j.ultramic.2013.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/30/2022]
Abstract
The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age.
Collapse
Affiliation(s)
- Zackary N Scholl
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
8
|
Reference-free alignment and sorting of single-molecule force spectroscopy data. Biophys J 2012; 102:2202-11. [PMID: 22824285 DOI: 10.1016/j.bpj.2012.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/01/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
Single-molecule force spectroscopy has become a versatile tool for investigating the (un)folding of proteins and other polymeric molecules. Like other single-molecule techniques, single-molecule force spectroscopy requires recording and analysis of large data sets to extract statistically meaningful conclusions. Here, we present a data analysis tool that provides efficient filtering of heterogeneous data sets, brings spectra into register based on a reference-free alignment algorithm, and determines automatically the location of unfolding barriers. Furthermore, it groups spectra according to the number of unfolding events, subclassifies the spectra using cross correlation-based sorting, and extracts unfolding pathways by principal component analysis and clustering methods to extracted peak positions. Our approach has been tested on a data set obtained through mechanical unfolding of bacteriorhodopsin (bR), which contained a significant number of spectra that did not show the well-known bR fingerprint. In addition, we have tested the performance of the data analysis tool on unfolding data of the soluble multidomain (Ig27)(8) protein.
Collapse
|