1
|
Das P, Murthy S, Abbas E, White K, Arya R. The Hox Gene, abdominal A controls timely mitotic entry of neural stem cell and their growth during CNS development in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611161. [PMID: 39282366 PMCID: PMC11398374 DOI: 10.1101/2024.09.04.611161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The size of a cell is important for its function and physiology. Interestingly, size variation can be easily observed in clonally derived embryonic and hematopoietic stem cells. Here, we investigated the regulation of stem cell growth and its association with cell fate. We observed heterogeneous sizes of neuroblasts or neural stem cells (NSCs) in the Drosophila ventral nerve cord (VNC). Specifically, thoracic NSCs were larger than those in the abdominal region of the VNC. Our research uncovered a significant role of the Hox gene abdominal A (abdA) in the regulation of abdominal NSC growth. Developmental expression of AbdA retards their growth and delays mitotic entry compared to thoracic NSCs. The targeted loss of abdA enhanced their growth and caused an earlier entry into mitosis with a faster cycling rate. Furthermore, ectopic expression of abdA reduced the size of thoracic NSCs and delayed their entry into mitosis. We suggest that abdA plays an instructive role in regulating NSC size and exit from quiescence. This study demonstrates for the first time the involvement of abdA in NSC fate determination by regulating their growth, entry into mitosis and proliferation rate, and thus their potential to make appropriate number of progeny for CNS patterning.
Collapse
Affiliation(s)
- Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| | | | - Eshan Abbas
- ADP Road, Christianpatty, Nagaon, Assam- 782003, India
| | - Kristin White
- MGH/Harvard Medical School,CBRC, Bldg 149, 13th St, Charlestown, MA 02129
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005
| |
Collapse
|
2
|
Loker R, Sanner JE, Mann RS. Cell-type-specific Hox regulatory strategies orchestrate tissue identity. Curr Biol 2021; 31:4246-4255.e4. [PMID: 34358443 PMCID: PMC8511240 DOI: 10.1016/j.cub.2021.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
Hox proteins are homeodomain transcription factors that diversify serially homologous segments along the animal body axis, as revealed by the classic bithorax phenotype of Drosophila melanogaster, in which mutations in Ultrabithorax (Ubx) transform the third thoracic segment into the likeness of the second thoracic segment. To specify segment identity, we show that Ubx both increases and decreases chromatin accessibility, coinciding with its dual role as both an activator and repressor of transcription. However, the choice of transcriptional activity executed by Ubx is spatially regulated and depends on the availability of cofactors, with Ubx acting as a repressor in some populations and as an activator in others. Ubx-mediated changes to chromatin accessibility positively and negatively affect the binding of Scalloped (Sd), a transcription factor that is required for appendage development in both segments. These findings illustrate how a single Hox protein can modify complex gene regulatory networks to transform the identity of an entire tissue.
Collapse
Affiliation(s)
- Ryan Loker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jordyn E Sanner
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Pop S, Chen CL, Sproston CJ, Kondo S, Ramdya P, Williams DW. Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife 2020; 9:59566. [PMID: 32894223 PMCID: PMC7535934 DOI: 10.7554/elife.59566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/06/2020] [Indexed: 11/20/2022] Open
Abstract
Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death (PCD) appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block PCD in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of ‘undead’ neurons with complex arborisations and distinct neurotransmitter identities. Activation of these ‘undead’ neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations. Just like a sculptor chips away at a block of granite to make a statue, the nervous system reaches its mature state by eliminating neurons during development through a process known as programmed cell death. In vertebrates, this mechanism often involves newly born neurons shrivelling away and dying if they fail to connect with others during development. Most studies in insects have focused on the death of neurons that occurs at metamorphosis, during the transition between larva to adult, when cells which are no longer needed in the new life stage are eliminated. Pop et al. harnessed a newly designed genetic probe to point out that, in fruit flies, programmed cell death of neurons at metamorphosis is not the main mechanism through which cells die. Rather, the majority of cell death takes place as soon as neurons are born throughout all larval stages, when most of the adult nervous system is built. To gain further insight into the role of this ‘early’ cell death, the neurons were stopped from dying, showing that these cells were able to reach maturity and function. Together, these results suggest that early cell death may be a mechanism fine-tuned by evolution to shape the many and varied nervous systems of insects. To explore this, Pop et al. looked for hints of early cell death in relatives of fruit flies that are unable to fly: the swift lousefly and the bee lousefly. This analysis showed that early cell death is likely to occur in these two insects, but it follows different patterns than in the fruit fly, potentially targeting the neurons that would have controlled flight in these flies’ ancestors. Brains are the product of evolution: learning how neurons change their connections and adapt could help us understand how the brain works in health and disease. This knowledge may also be relevant to work on artificial intelligence, a discipline that often bases the building blocks and connections in artificial ‘brains’ on how neurons communicate with one another.
Collapse
Affiliation(s)
- Sinziana Pop
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Connor J Sproston
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Lacin H, Williamson WR, Card GM, Skeath JB, Truman JW. Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS. eLife 2020; 9:55007. [PMID: 32216875 PMCID: PMC7156266 DOI: 10.7554/elife.55007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.
Collapse
Affiliation(s)
- Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Genetics, Washington University, Saint Louis, United States
| | - W Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James B Skeath
- Department of Genetics, Washington University, Saint Louis, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Friday Harbor Laboratories, University of Washington, Friday Harbor, United States
| |
Collapse
|
5
|
Diaz-de-la-Loza MDC, Loker R, Mann RS, Thompson BJ. Control of tissue morphogenesis by the HOX gene Ultrabithorax. Development 2020; 147:dev184564. [PMID: 32122911 PMCID: PMC7063672 DOI: 10.1242/dev.184564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the Ultrabithorax (Ubx) gene cause homeotic transformation of the normally two-winged Drosophila into a four-winged mutant fly. Ubx encodes a HOX family transcription factor that specifies segment identity, including transformation of the second set of wings into rudimentary halteres. Ubx is known to control the expression of many genes that regulate tissue growth and patterning, but how it regulates tissue morphogenesis to reshape the wing into a haltere is still unclear. Here, we show that Ubx acts by repressing the expression of two genes in the haltere, Stubble and Notopleural, both of which encode transmembrane proteases that remodel the apical extracellular matrix to promote wing morphogenesis. In addition, Ubx induces expression of the Tissue inhibitor of metalloproteases in the haltere, which prevents the basal extracellular matrix remodelling necessary for wing morphogenesis. Our results provide a long-awaited explanation for how Ubx controls morphogenetic transformation.
Collapse
Affiliation(s)
| | - Ryan Loker
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, St Pancras, London NW1 1AT, United Kingdom
- EMBL Australia, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Mahmud AKMF, Yang D, Stenberg P, Ioshikhes I, Nandi S. Exploring a Drosophila Transcription Factor Interaction Network to Identify Cis-Regulatory Modules. J Comput Biol 2019; 27:1313-1328. [PMID: 31855461 DOI: 10.1089/cmb.2018.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple transcription factors (TFs) bind to specific sites in the genome and interact among themselves to form the cis-regulatory modules (CRMs). They are essential in modulating the expression of genes, and it is important to study this interplay to understand gene regulation. In the present study, we integrated experimentally identified TF binding sites collected from published studies with computationally predicted TF binding sites to identify Drosophila CRMs. Along with the detection of the previously known CRMs, this approach identified novel protein combinations. We determined high-occupancy target sites, where a large number of TFs bind. Investigating these sites revealed that Giant, Dichaete, and Knirp are highly enriched in these locations. A common TAG team motif was observed at these sites, which might play a role in recruiting other TFs. While comparing the binding sites at distal and proximal promoters, we found that certain regulatory TFs, such as Zelda, were highly enriched in enhancers. Our study has shown that, from the information available concerning the TF binding sites, the real CRMs could be predicted accurately and efficiently. Although we only may claim co-occurrence of these proteins in this study, it may actually point to their interaction (as known interaction proteins typically co-occur together). Such an integrative approach can, therefore, help us to provide a better understanding of the interplay among the factors, even though further experimental verification is required.
Collapse
Affiliation(s)
| | - Doo Yang
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ilya Ioshikhes
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Soumyadeep Nandi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati, India; Amity University Haryana, Gurugram, India
| |
Collapse
|
7
|
Issa AR, Picao-Osorio J, Rito N, Chiappe ME, Alonso CR. A Single MicroRNA-Hox Gene Module Controls Equivalent Movements in Biomechanically Distinct Forms of Drosophila. Curr Biol 2019; 29:2665-2675.e4. [PMID: 31327720 PMCID: PMC6710004 DOI: 10.1016/j.cub.2019.06.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. The fruit fly miRNA gene miR-iab4 controls the same behavior in the larva and adult miR-iab4 exerts its behavioral roles via repression of the Hox gene Ultrabithorax miRNA/Hox inputs affect the physiology and not the anatomy of specific motor neurons Conditional expression shows a novel role of the Hox genes in adult neural function
Collapse
Affiliation(s)
- A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - João Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Nuno Rito
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| |
Collapse
|
8
|
Wang H, Hu H, Xiang Z, Lu C, Dai F, Tong X. Identification and characterization of a new long noncoding RNA iab-1 in the Hox cluster of silkworm, Bombyx mori identification of iab-1. J Cell Biochem 2019; 120:17283-17292. [PMID: 31106470 DOI: 10.1002/jcb.28990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 02/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) areinvolvedin a variety of biological processes. In silkworm, numerous lncRNAs have been predicted through deep transcriptome sequencing, but no functional role has been experimentally validated yet. Here, we characterized a new lncRNA iab-1 that was mainly encoded by the intergenic region between Bmabd-A and Bmabd-B in the Homeobox (Hox) cluster of the silkworm, Bombyx mori. More than seven alternative splicing isoforms of lncRNA iab-1 were cloned, which were subgrouped into types 1 and 2 based on the location of the 3'-ends. The iab-1 was expressed at a low level, but the expression of iab-1 peaked at several specific development stages, including 3 to 4 days during the embryonic stage, stages before fourth molting, and the sixth hour after the fourth molting, and early stages during metamorphosis. It was highly expressed in the nervus and epidermis, especially the epidermis of the posterior abdomen at the fourth instar premolting stage. The relationship between iab-1 and nearby Hox genes was analyzed at different developmental stages. Iab-1 expression was highly associated with Bmabd-A as well as Bmabd-B in the embryonic and larval stages, while this association was decreased at the metamorphic stage; iab-1 expression was highly associated with BmUbx only in the embryonic stage. Downregulation of iab-1 expression by small interfering RNA led to the death of most of the treated individuals at the larval stage, suggesting that iab-1 transcript expression might be involved in certain relevant physiological processes. The expression of Bmabd-A and Bmabd-B did not change in iab-1 downregulated individuals, indicating that the relevance between the two genes and iab-1 was not induced by iab-1 transcript. Collectively, the results showed that the newly identified iab-1 may be involved in some physiological processes, and the interaction between iab-1 and Hox genes was also preliminarily analyzed.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 2017; 144:4552-4562. [PMID: 29158446 DOI: 10.1242/dev.157826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Drosophila neuroblasts are an excellent model for investigating how neuronal diversity is generated. Most brain neuroblasts generate a series of ganglion mother cells (GMCs) that each make two neurons (type I lineage), but 16 brain neuroblasts generate a series of intermediate neural progenitors (INPs) that each produce 4-6 GMCs and 8-12 neurons (type II lineage). Thus, type II lineages are similar to primate cortical lineages, and may serve as models for understanding cortical expansion. Yet the origin of type II neuroblasts remains mysterious: do they form in the embryo or larva? If they form in the embryo, do their progeny populate the adult central complex, as do the larval type II neuroblast progeny? Here, we present molecular and clonal data showing that all type II neuroblasts form in the embryo, produce INPs and express known temporal transcription factors. Embryonic type II neuroblasts and INPs undergo quiescence, and produce embryonic-born progeny that contribute to the adult central complex. Our results provide a foundation for investigating the development of the central complex, and tools for characterizing early-born neurons in central complex function.
Collapse
Affiliation(s)
- Kathleen T Walsh
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila. PLoS One 2016; 11:e0155957. [PMID: 27223118 PMCID: PMC4880190 DOI: 10.1371/journal.pone.0155957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability “hotspot” depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - W. Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Troy R. Shirangi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - James W. Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
11
|
Lacin H, Truman JW. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. eLife 2016; 5:e13399. [PMID: 26975248 PMCID: PMC4805552 DOI: 10.7554/elife.13399] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI:http://dx.doi.org/10.7554/eLife.13399.001 Fruit flies undergo a process called metamorphosis in which they change from a maggot or larva into an adult fly. These two life stages look and behave differently and appear to have strikingly different nervous systems. The relationship between the two nervous systems has been most extensively studied in the ventral nerve cord (which is the equivalent to the spinal cord in humans). Although the ventral nerve cords of a larva and an adult fly look quite different, they are generated by the same set of stem cells known as neuroblasts. This is made possible because the neuroblasts proliferate in two separate phases: the first phase occurs in the embryo to generate the neurons of the larval nervous system, and the second phase occurs in the larva to generate neurons for the adult’s nervous system. Now, Lacin and Truman have paired each of the neurons in the adult fruit fly’s nerve cord with their corresponding neurons in the nerve cords of fruit fly larvae. This involved identifying the original neuroblasts that gave rise to each of the neurons in both larval and adult fruit flies. The results suggest that most neurons that arise from a given neuroblast produce a similar set of molecules and extend similar nerve fibers, even though they work in two different nervous systems. Since neuroblasts in non-metamorphosing insects proliferate continuously, these findings also suggest that, when metamorphosis evolved, a pause was introduced to create the two separate phases of proliferation without a big effect on the types of neurons generated. Lacin and Truman then went on to discover three neuroblasts that appear to be unique to the middle (or thoracic) segments of a fruit fly. The experiments reveal that the presence of these neuroblasts depended on specific genes that control the development of animal body plans. Two of these neuroblasts generate the so-called motor neurons that control the movement of a fly’s legs. Flies only have legs on their thoracic segments, so this indicates that the development of new neurons is coordinated with the development of the body plan at the stem cell level. The third neuroblast generates neurons that connect with the leg motor neurons, and Lacin and Truman propose that this neuroblast arose from a copy of a neighboring stem cell. The resulting extra neurons may have enabled finer control over the leg movements required for activities such as walking and grooming. Following on from this work, it is now possible to investigate how molecular events that occur from the embryonic to the adult stages of a fruit fly’s life control the formation and function of its nervous system. DOI:http://dx.doi.org/10.7554/eLife.13399.002
Collapse
Affiliation(s)
- Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
12
|
Birkholz O, Rickert C, Nowak J, Coban IC, Technau GM. Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Biol Open 2015; 4:420-34. [PMID: 25819843 PMCID: PMC4400586 DOI: 10.1242/bio.201411072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clarification of complete cell lineages, which are produced by specific stem cells, is fundamental for understanding mechanisms, controlling the generation of cell diversity and patterning in an emerging tissue. In the developing Central Nervous System (CNS) of Drosophila, neural stem cells (neuroblasts) exhibit two periods of proliferation: During embryogenesis they produce primary lineages, which form the larval CNS. After a phase of mitotic quiescence, a subpopulation of them resumes proliferation in the larva to give rise to secondary lineages that build up the CNS of the adult fly. Within the ventral nerve cord (VNC) detailed descriptions exist for both primary and secondary lineages. However, while primary lineages have been linked to identified neuroblasts, the assignment of secondary lineages has so far been hampered by technical limitations. Therefore, primary and secondary neural lineages co-existed as isolated model systems. Here we provide the missing link between the two systems for all lineages in the thoracic and abdominal neuromeres. Using the Flybow technique, embryonic neuroblasts were identified by their characteristic and unique lineages in the living embryo and their further development was traced into the late larval stage. This comprehensive analysis provides the first complete view of which embryonic neuroblasts are postembryonically reactivated along the anterior/posterior-axis of the VNC, and reveals the relationship between projection patterns of primary and secondary sublineages.
Collapse
Affiliation(s)
- Oliver Birkholz
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Christof Rickert
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Julia Nowak
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Ivo C Coban
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
13
|
Arya R, Sarkissian T, Tan Y, White K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ 2015; 22:1378-87. [PMID: 25633198 DOI: 10.1038/cdd.2014.235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023] Open
Abstract
Cell death is a prevalent, well-controlled and fundamental aspect of development, particularly in the nervous system. In Drosophila, specific neural stem cells are eliminated by apoptosis during embryogenesis. In the absence of apoptosis, these stem cells continue to divide, resulting in a dramatically hyperplastic central nervous system and adult lethality. Although core cell death pathways have been well described, the spatial, temporal and cell identity cues that activate the cell death machinery in specific cells are largely unknown. We identified a cis-regulatory region that controls the transcription of the cell death activators reaper, grim and sickle exclusively in neural stem cells. Using a reporter generated from this regulatory region, we found that Notch activity is required for neural stem cell death. Notch regulates the expression of the abdominalA homeobox protein, which provides important spatial cues for death. Importantly, we show that pro-apoptotic Notch signaling is activated by the Delta ligand expressed on the neighboring progeny of the stem cell. Thus we identify a previously undescribed role for progeny in regulating the proper developmental death of their parental stem cells.
Collapse
Affiliation(s)
- R Arya
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - T Sarkissian
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - Y Tan
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - K White
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
14
|
Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, Truman JW. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 2014; 8:897-908. [PMID: 25088417 DOI: 10.1016/j.celrep.2014.06.065] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/13/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
We report the larval CNS expression patterns for 6,650 GAL4 lines based on cis-regulatory regions (CRMs) from the Drosophila genome. Adult CNS expression patterns were previously reported for this collection, thereby providing a unique resource for determining the origins of adult cells. An illustrative example reveals the origin of the astrocyte-like glia of the ventral CNS. Besides larval neurons and glia, the larval CNS contains scattered lineages of immature, adult-specific neurons. Comparison of lineage expression within this large collection of CRMs provides insight into the codes used for designating neuronal types. The CRMs encode both dense and sparse patterns of lineage expression. There is little correlation between brain and thoracic lineages in patterns of sparse expression, but expression in the two regions is highly correlated in the dense mode. The optic lobes, by comparison, appear to use a different set of genetic instructions in their development.
Collapse
Affiliation(s)
- Hsing-Hsi Li
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jason R Kroll
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Sara M Lennox
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Omotara Ogundeyi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jennifer Jeter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gina Depasquale
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
15
|
Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev Biol 2014; 390:102-15. [DOI: 10.1016/j.ydbio.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/23/2014] [Accepted: 03/29/2014] [Indexed: 11/16/2022]
|
16
|
Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev Biol 2013; 384:258-89. [PMID: 23872236 PMCID: PMC3928077 DOI: 10.1016/j.ydbio.2013.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.
Collapse
Affiliation(s)
- Darren C. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K. Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wichanee Borisuthirattana
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|