1
|
Waldo JJ, Halmai JANM, Fink KD. Epigenetic editing for autosomal dominant neurological disorders. Front Genome Ed 2024; 6:1304110. [PMID: 38510848 PMCID: PMC10950933 DOI: 10.3389/fgeed.2024.1304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Epigenetics refers to the molecules and mechanisms that modify gene expression states without changing the nucleotide context. These modifications are what encode the cell state during differentiation or epigenetic memory in mitosis. Epigenetic modifications can alter gene expression by changing the chromatin architecture by altering the affinity for DNA to wrap around histone octamers, forming nucleosomes. The higher affinity the DNA has for the histones, the tighter it will wrap and therefore induce a heterochromatin state, silencing gene expression. Several groups have shown the ability to harness the cell's natural epigenetic modification pathways to engineer proteins that can induce changes in epigenetics and consequently regulate gene expression. Therefore, epigenetic modification can be used to target and treat disorders through the modification of endogenous gene expression. The use of epigenetic modifications may prove an effective path towards regulating gene expression to potentially correct or cure genetic disorders.
Collapse
Affiliation(s)
| | | | - Kyle D. Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, MIND Institute, UC Davis Health System, Sacramento, CA, United States
| |
Collapse
|
2
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Ho NJ, Chen X, Lei Y, Gu S. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zool Res 2023; 44:650-662. [PMID: 37161652 PMCID: PMC10236304 DOI: 10.24272/j.issn.2095-8137.2022.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 05/11/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of genetic motor neuron diseases resulting from length-dependent axonal degeneration of the corticospinal upper motor neurons. Due to the advancement of next-generation sequencing, more than 70 novel HSP disease-causing genes have been identified in the past decade. Despite this, our understanding of HSP physiopathology and the development of efficient management and treatment strategies remain poor. One major challenge in studying HSP pathogenicity is selective neuronal vulnerability, characterized by the manifestation of clinical symptoms that are restricted to specific neuronal populations, despite the presence of germline disease-causing variants in every cell of the patient. Furthermore, disease genes may exhibit ubiquitous expression patterns and involve a myriad of different pathways to cause motor neuron degeneration. In the current review, we explore the correlation between transcriptomic data and clinical manifestations, as well as the importance of interspecies models by comparing tissue-specific transcriptomic profiles of humans and mice, expression patterns of different genes in the brain during development, and single-cell transcriptomic data from related tissues. Furthermore, we discuss the potential of emerging single-cell RNA sequencing technologies to resolve unanswered questions related to HSP pathogenicity.
Collapse
Affiliation(s)
- Nicolas James Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| | - Yong Lei
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
- The Chinese University of Hong Kong (Shenzhen), Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518172, China. E-mail:
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China. E-mail:
| |
Collapse
|
4
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
5
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
6
|
Tastan Bishop Ö, Mutemi Musyoka T, Barozi V. Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery. J Mol Biol 2022; 434:167610. [DOI: 10.1016/j.jmb.2022.167610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
|
7
|
Zolotareva O, Kleine M. A Survey of Gene Prioritization Tools for Mendelian and Complex Human Diseases. J Integr Bioinform 2019; 16:/j/jib.ahead-of-print/jib-2018-0069/jib-2018-0069.xml. [PMID: 31494632 PMCID: PMC7074139 DOI: 10.1515/jib-2018-0069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Modern high-throughput experiments provide us with numerous potential associations between genes and diseases. Experimental validation of all the discovered associations, let alone all the possible interactions between them, is time-consuming and expensive. To facilitate the discovery of causative genes, various approaches for prioritization of genes according to their relevance for a given disease have been developed. In this article, we explain the gene prioritization problem and provide an overview of computational tools for gene prioritization. Among about a hundred of published gene prioritization tools, we select and briefly describe 14 most up-to-date and user-friendly. Also, we discuss the advantages and disadvantages of existing tools, challenges of their validation, and the directions for future research.
Collapse
Affiliation(s)
- Olga Zolotareva
- Bielefeld University, Faculty of Technology and Center for Biotechnology, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Universitätsstraße 25, Bielefeld, Germany
| | - Maren Kleine
- Bielefeld University, Faculty of Technology, Bioinformatics/Medical Informatics Department, Universitätsstraße 25, Bielefeld, Germany
| |
Collapse
|
8
|
Liang XH, Shen W, Crooke ST. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639196 DOI: 10.1007/978-981-10-4310-9_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| |
Collapse
|
9
|
Suh JL, Barnash KD, Abramyan TM, Li F, The J, Engelberg IA, Vedadi M, Brown PJ, Kireev DB, Arrowsmith CH, James LI, Frye SV. Discovery of selective activators of PRC2 mutant EED-I363M. Sci Rep 2019; 9:6524. [PMID: 31024026 PMCID: PMC6484020 DOI: 10.1038/s41598-019-43005-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 01/08/2023] Open
Abstract
Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.
Collapse
Affiliation(s)
- Junghyun L Suh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Kimberly D Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Foghorn Therapeutics, Cambridge, MA, 02142, USA
| | - Tigran M Abramyan
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Juliana The
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada. .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
10
|
Long MJC, Urul DA, Aye Y. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods Enzymol 2019; 633:203-230. [PMID: 32046846 PMCID: PMC7027669 DOI: 10.1016/bs.mie.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.
Collapse
Affiliation(s)
| | - Daniel A Urul
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, Bui HH, Damle SS, Riney S, Graham MJ, Crooke RM, Crooke ST. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res 2017; 45:9528-9546. [PMID: 28934489 PMCID: PMC5766168 DOI: 10.1093/nar/gkx632] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Joyee Yao
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Michael T. Migawa
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Huynh-Hoa Bui
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Sagar S. Damle
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stan Riney
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Mark J. Graham
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Rosanne M. Crooke
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| |
Collapse
|
12
|
Schmitt ND, Agar JN. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:480-491. [PMID: 28558143 PMCID: PMC6002871 DOI: 10.1002/jms.3953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 05/08/2023]
Abstract
Conformational change and modification of proteins are involved in many cellular functions. However, they can also have adverse effects that are implicated in numerous diseases. How structural change promotes disease is generally not well-understood. This perspective illustrates how mass spectrometry (MS), followed by toxicological and epidemiological validation, can discover disease-relevant structural changes and therapeutic strategies. We (with our collaborators) set out to characterize the structural and toxic consequences of disease-associated mutations and post-translational modifications (PTMs) of the cytosolic antioxidant protein Cu/Zn-superoxide dismutase (SOD1). Previous genetic studies discovered >180 different mutations in the SOD1 gene that caused familial (inherited) amyotrophic lateral sclerosis (fALS). Using hydrogen-deuterium exchange with mass spectrometry, we determined that diverse disease-associated SOD1 mutations cause a common structural defect - perturbation of the SOD1 electrostatic loop. X-ray crystallographic studies had demonstrated that this leads to protein aggregation through a specific interaction between the electrostatic loop and an exposed beta-barrel edge strand. Using epidemiology methods, we then determined that decreased SOD1 stability and increased protein aggregation are powerful risk factors for fALS progression, with a combined hazard ratio > 300 (for comparison, a lifetime of smoking is associated with a hazard ratio of ~15 for lung cancer). The resulting structural model of fALS etiology supported the hypothesis that some sporadic ALS (sALS, ~80% of ALS is not associated with a gene defect) could be caused by post-translational protein modification of wild-type SOD1. We developed immunocapture antibodies and high sensitivity top-down MS methods and characterized PTMs of wild-type SOD1 using human tissue samples. Using global hydrogen-deuterium exchange, X-ray crystallography and neurotoxicology, we then characterized toxic and protective subsets of SOD1 PTMs. To cap this perspective, we present proof-of-concept that post-translational modification can cause disease. We show that numerous mutations (N➔D; Q➔E), which result in the same chemical structure as the PTM deamidation, cause multiple diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Correspondence Northeastern University, 360 Huntington Avenue, 140 The Fenway, Room 417, Boston, MA 02115
| |
Collapse
|
13
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
14
|
Yue WW. From structural biology to designing therapy for inborn errors of metabolism. J Inherit Metab Dis 2016; 39:489-98. [PMID: 27240455 PMCID: PMC4920855 DOI: 10.1007/s10545-016-9923-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
At the SSIEM Symposium in Istanbul 2010, I presented an overview of protein structural approaches in the study of inborn errors of metabolism (Yue and Oppermann 2011). Five years on, the field is going strong with new protein structures, uncovered catalytic functions and novel chemical matters for metabolic enzymes, setting the stage for the next generation of drug discovery. This article aims to update on recent advances and lessons learnt on inborn errors of metabolism via the protein-centric approach, citing examples of work from my group, collaborators and co-workers that cover diverse pathways of transsulfuration, cobalamin and glycogen metabolism. Taking into consideration that many inborn errors of metabolism result in the loss of enzyme function, this presentation aims to outline three key principles that guide the design of small molecule therapy in this technically challenging field: (1) integrating structural, biochemical and cell-based data to evaluate the wide spectrum of mutation-driven enzyme defects in stability, catalysis and protein-protein interaction; (2) studying multi-domain proteins and multi-protein complexes as examples from nature, to learn how enzymes are activated by small molecules; (3) surveying different regions of the enzyme, away from its active site, that can be targeted for the design of allosteric activators and inhibitors.
Collapse
Affiliation(s)
- Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
15
|
Lee HJ, Yang YJ, Jeong S, Lee JD, Choi SY, Jung DW, Moon IS. Development of a vestibular schwannoma xenograft zebrafish model for in vivo antitumor drug screening. Laryngoscope 2016; 126:E409-E415. [PMID: 27242319 DOI: 10.1002/lary.26043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS The development of a simple, reliable, and cost-effective animal model greatly facilitates disease treatment. We aimed to establish a rapid, simple, and reproducible live zebrafish vestibular schwannoma xenograft model for antitumor drug screening. METHODS We optimized each of the following conditions for tumor cell xenografts in zebrafish larvae: larval stage, incubation temperature, and injected cell number. We used NF2-/-mouse Schwann (SC4) cells and generated mCherry fluorescent protein-expressing cells prior to injection into zebrafish larvae. SC4 cells were counted using a fluorescence microscope, suspended in 10% fetal bovine serum, and injected into the center of the yolk sac using a microinjection system. The injected embryos were transferred to E3 medium (for zebrafish embryos), and subsequent tumor formation was observed by fluorescence microscopy over a 5-day period. To validate our model, xenografted embryos were transferred into 6-well plates (5 embryos per well) and treated with everolimus, a known antitumor drug. RESULTS mCherry fluorescent protein-expressing SC4 cells were successfully grafted into the yolk sacs of zebrafish embryos without any immunosuppressant treatment. At 2 days postinjection, the xenografted cells had grown into tumor masses. The optimal speed of tumor formation depended on the larval stage (30 hpf), incubation temperature (31°C), and injected cell number (200 cells). In preliminary tests, everolimus treatment yielded a > 20% reduction in the number of SC4 cells in the yolk. CONCLUSION Our in vivo model has the potential to greatly facilitate vestibular schwannoma treatment because of its speed, simplicity, reproducibility, and amenability to live imaging. LEVEL OF EVIDENCE NA Laryngoscope, 126:E409-E415, 2016.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Ju Yang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sewon Jeong
- Department of Otorhinolaryngology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology, Soonchunhyang University College of Medicine, Buchoen, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Lab, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
A Pressing Need for Pharmacotherapy Development to Treat Drug Addiction: An Editorial from a Legal Perspective. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016. [PMID: 27055610 DOI: 10.1016/bs.irn.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Only three FDA-approved pharmacological treatments exist for treating opiate dependence, all of which are underprescribed and underused. No FDA-approved pharmacological treatments exist for cocaine or methamphetamine dependence. More evidence-based, FDA-approved treatments are needed for treating drug dependence, but pharmaceutical companies are unlikely to pursue such research without government incentives. Today pharmaceutical companies primarily conduct research and development (R&D) related to "blockbuster" and rare diseases; drug dependence does not fall into either category. Further compounding the problem, pharmaceutical companies have been recently slashing risky areas of research, rather than adopting new areas. Fortunately, the government has a number of options to incentivize pharmaceutical R&D relating to drug dependence treatment, including the following: market exclusivity for new medications, tax breaks, priority review vouchers, liability reduction, and an advanced market commitment.
Collapse
|
17
|
Filteau M, Hamel V, Pouliot MC, Gagnon-Arsenault I, Dubé AK, Landry CR. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol Syst Biol 2015; 11:832. [PMID: 26459777 PMCID: PMC4631203 DOI: 10.15252/msb.20156444] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to one's genetic and environmental makeups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott–Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof. Specifically, the compensatory mutation rate and type, the molecular rescue mechanism, the genetic target, and the associated fitness cost varied across contexts. The course of compensatory evolution is therefore highly contingent on the initial conditions in which the deleterious mutation occurs. In addition, these results reveal biologically favored therapeutic targets for the Wiskott–Aldrich syndrome, including the target of an unrelated clinically approved drug. Our results experimentally illustrate the importance of epistasis and environmental evolutionary constraints that shape the adaptive landscape and evolutionary rate of molecular networks.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Véronique Hamel
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Marie-Christine Pouliot
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Alexandre K Dubé
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| |
Collapse
|
18
|
Abstract
Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis.
Collapse
|
19
|
Park SH, Kim HJ, Yim SH, Kim AR, Tyagi N, Shen H, Kim KK, Shin BA, Jung DW, Williams DR. Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates. JOURNAL OF NATURAL PRODUCTS 2014; 77:2389-2396. [PMID: 25397870 DOI: 10.1021/np500231g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quercetin is a plant-derived flavonoid and its cytotoxic properties have been widely reported. However, in nature, quercetin predominantly occurs as various glycosides. Thus far the cytotoxic activity of these glycosides has not been investigated to the same extent as quercetin, especially in animal models. In this study, the cytotoxic properties of quercetin (1), hyperoside (quercetin 3-O-galactoside, 2), isoquercitrin (quercetin 3-O-glucoside, 3), quercitrin (quercetin 3-O-rhamnoside, 4), and spiraeoside (quercetin 4'-O-glucoside, 5) were directly compared in vitro using assays of cancer cell viability. To further characterize the influence of glycosylation in vivo, a novel zebrafish-based assay was developed that allows the rapid and experimentally convenient visualization of glycoside cleavage in the digestive tract. This assay was correlated with a novel human tumor xenograft assay in the same animal model. The results showed that 3 is as effective as 1 at inhibiting cancer cell proliferation in vivo. Moreover, it was observed that 3 can be effectively deglycosylated in the digestive tract. Collectively, these results indicate that 3 is a very promising drug candidate for cancer therapy, because glycosylation confers advantageous pharmacological changes compared with the aglycone, 1. Importantly, the development of a novel and convenient fluorescence-based assay for monitoring deglycosylation in living vertebrates provides a valuable platform for determining the metabolic fate of naturally occurring glycosides.
Collapse
Affiliation(s)
- Si-Hwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Letso RR, Bauer AJ, Lunn MR, Yang WS, Stockwell BR. Small molecule screen reveals regulation of survival motor neuron protein abundance by Ras proteins. ACS Chem Biol 2013; 8:914-22. [PMID: 23496866 DOI: 10.1021/cb300374h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecule modulators of protein activity have proven invaluable in the study of protein function and regulation. While inhibitors of protein activity are relatively common, small molecules that can increase protein abundance are rare. Small molecule protein upregulators with targeted activities would be of value in the study of the mechanisms underlying loss-of-function diseases. We developed a high-throughput screening approach to identify small molecule upregulators of the Survival of Motor Neuron protein (SMN), whose decreased levels cause the neurodegenerative disease spinal muscular atrophy (SMA). We screened 69,189 compounds for SMN upregulators and performed mechanistic studies on the most active compound, a bromobenzophenone analogue designated cuspin-1. Mechanistic studies of cuspin-1 revealed that increasing Ras signaling upregulates SMN protein abundance via an increase in translation rate. These findings suggest that controlled modulation of the Ras signaling pathway may benefit patients with SMA.
Collapse
Affiliation(s)
- Reka R. Letso
- Howard
Hughes Medical Institute, Department of Biological Sciences and ‡Department of
Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New
York, New York 10027, United States
| | - Andras J. Bauer
- Howard
Hughes Medical Institute, Department of Biological Sciences and ‡Department of
Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New
York, New York 10027, United States
| | - Mitchell R. Lunn
- Howard
Hughes Medical Institute, Department of Biological Sciences and ‡Department of
Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New
York, New York 10027, United States
| | - Wan Seok Yang
- Howard
Hughes Medical Institute, Department of Biological Sciences and ‡Department of
Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New
York, New York 10027, United States
| | - Brent R. Stockwell
- Howard
Hughes Medical Institute, Department of Biological Sciences and ‡Department of
Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New
York, New York 10027, United States
| |
Collapse
|
21
|
Gavrin LK, Denny RA, Saiah E. Small Molecules That Target Protein Misfolding. J Med Chem 2012; 55:10823-43. [DOI: 10.1021/jm301182j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lori Krim Gavrin
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Rajiah Aldrin Denny
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Eddine Saiah
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
22
|
Jung DW, Oh ES, Park SH, Chang YT, Kim CH, Choi SY, Williams DR. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. MOLECULAR BIOSYSTEMS 2012; 8:1930-9. [PMID: 22569777 DOI: 10.1039/c2mb05501e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a relatively simple, reliant and cost-effective animal test will greatly facilitate drug development. In this study, our goal was the establishment of a rapid, simple, sensitive and reproducible zebrafish xenograft model for anti-cancer drug screening. We optimized the conditions for the cancer cell xenograft in terms of injected cell numbers, incubation temperature and time. A range of human carcinoma cell types were stained with a fluorescent dye prior to injection into the fish larvae. Subsequent cancer cell dissemination was observed under fluorescent microscopy. Differences in injected cell numbers were reflected in the rate of dissemination from the xenograft site. Paclitaxel, known as a microtubule stabilizer, dose-dependently inhibited cancer cell dissemination in our zebrafish xenograft model. An anti-migratory drug, LY294002 (phosphatidylinositol 3-kinase inhibitor) also decreased the cancer cell dissemination. Chemical modifications to increase cancer drug pharmacokinetics, such as increased solubility (17-DMAG compared to geldanamycin) could also be assessed in our xenograft model. In addition to testing our new model using known anti-cancer drugs, we carried out further validation by screening a tagged triazine library. Two novel anti-cancer drug candidates were discovered. Therefore, our zebrafish xenograft model provides a vertebrate animal system for the rapid screening and pre-clinical testing of novel anti-cancer agents, prior to the requirement for testing in mammals. Our model system should greatly facilitate drug development for cancer therapy because of its speed, simplicity and reproducibility.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-dong, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Lawson EL, Mills DR, Brilliant KE, Hixson DC. The transmembrane domain of CEACAM1-4S is a determinant of anchorage independent growth and tumorigenicity. PLoS One 2012; 7:e29606. [PMID: 22235309 PMCID: PMC3250453 DOI: 10.1371/journal.pone.0029606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/01/2011] [Indexed: 01/21/2023] Open
Abstract
CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues.
Collapse
Affiliation(s)
- Erica L. Lawson
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - David R. Mills
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kate E. Brilliant
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Douglas C. Hixson
- Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
24
|
Abstract
Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day.
Collapse
|