1
|
Jaeger B, Hoytema van Konijnenburg E, Groenveld MA, Langeveld M, Wolf NI, Bosch AM. Riboflavin transporter deficiency, the search for the undiagnosed: a retrospective data mining study. Orphanet J Rare Dis 2024; 19:410. [PMID: 39487500 PMCID: PMC11531112 DOI: 10.1186/s13023-024-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Riboflavin transporter deficiency (RTD) is an inborn error of riboflavin transport causing progressive neurological symptoms if left untreated. While infants with symptomatic RTD rapidly deteriorate, presentation later in childhood or in adulthood is more gradual. Symptoms overlap with more common diseases, carrying a risk of misdiagnosis, and given the relatively recent discovery of the genetic basis of RTD in 2010 it is likely that older patients have not been tested. Treatment with oral riboflavin (vitamin B2) halts disease progression and can be lifesaving. We hypothesized that patients may have been left unrecognized at the time of presentation and therefore we performed a datamining study to detect undiagnosed RTD patients in a tertiary referral hospital. METHODS A systematic search in Electronic Health Records (EHR) of all patients visiting the Amsterdam University Medical Centers between January 2004 and July 2021 was performed by a medical data text-mining tool. Pseudonymized patient records, matching pre-defined search terms (hearing loss or auditory neuropathy spectrum disorders combined with key clinical symptoms or riboflavin) were screened and included if no definitive alternative diagnosis for symptoms indicating possible RTD was found. Included patients were offered genetic testing. We documented total number of patients with possible RTD, number of patients that underwent genetic testing for RTD and results of genetic testing. RESULTS EHR of 2.288.901 patients were automatically screened. Thirteen patients with possible RTD were identified and offered genetic testing. Seven patients chose not to participate. Genetic testing was performed in 6 patients and was negative. The datamining did detect all previously known RTD patients in the hospital. CONCLUSIONS By screening a large cohort of patients of all ages in a tertiary referral hospital in a period spanning 17 years, no new RTD patients were found. Although not all suspected patients underwent genetic testing, our findings suggest that the prevalence of RTD is low and the chance of having missed this diagnosis in a tertiary referral hospital is limited.
Collapse
Affiliation(s)
- B Jaeger
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - E Hoytema van Konijnenburg
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M A Groenveld
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - M Langeveld
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - N I Wolf
- Department of Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - A M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024. [PMID: 39234898 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Kumar P, Nagarajan B, Prasad S, Nallasamy K, Sankhyan N, Suthar R. Progressive Ponto-bulbar Palsy in Childhood. Indian J Pediatr 2024; 91:864. [PMID: 38289436 DOI: 10.1007/s12098-024-05050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Pawan Kumar
- Department of Pediatrics, Advanced Pediatrics Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Balamurugan Nagarajan
- Department of Pediatrics, Advanced Pediatrics Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Shankar Prasad
- Department of Pediatrics, Advanced Pediatrics Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Karthi Nallasamy
- Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
4
|
Kentab AY, Alsalloum Y, Labani M, Hudairi A, Hamad MH, Jamjoom DZ, Alwadei AH, Alhammad RM, Bashiri FA. Case Report: A rare treatable metabolic syndrome (Brown-Vialetto-Van Laere syndrome) masquerading as chronic inflammatory demyelinating polyneuropathy from Saudi Arabia. Front Pediatr 2024; 12:1377515. [PMID: 38745833 PMCID: PMC11091239 DOI: 10.3389/fped.2024.1377515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background Brown-Vialetto-Van Laere (BVVL) syndrome is an extremely rare autosomal recessive progressive motoneuron disease that is caused by a defect in the riboflavin transporter genes SLC52A2 and SLC52A3. BVVL syndrome has a variable age of presentation, and it is characterized by progressive auditory neuropathy, bulbar palsy, stridor, muscle weakness, and respiratory compromise secondary to diaphragmatic and vocal cord paralysis. BVVL syndrome has a poor prognosis in the absence of treatment, including morbidity with quadriparesis and sensorineural hearing loss, with mortality in the younger age group. Early administration of riboflavin is associated with prolonged survival, low morbidity, and reversal of some clinical manifestations. Case presentation We describe an 18-month-old male infant with progressive pontobulbar palsy, loss of developmental milestones, and a clinical picture suggestive of chronic inflammatory demyelinating neuropathy. A nerve conduction study revealed axonal neuropathy, while molecular analysis revealed a homozygous mutation in one of the riboflavin transporter genes, SLC52A3, confirming BVVL syndrome. The patient needed long-term respiratory support and a gastrostomy tube to support feeding. With high-dose riboflavin supplementation, he experienced moderate recovery of motor function. Conclusion This report highlights the importance of considering BVVL syndrome in any patient who presents with the clinical phenotype of pontobulbar palsy and peripheral axonal neuropathy, as early riboflavin treatment may improve or halt disease progression, thus reducing the associated mortality and morbidity.
Collapse
Affiliation(s)
- Amal Y. Kentab
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Yara Alsalloum
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Mai Labani
- Pediatric Intensive Care Unit, Department of Pediatrics, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abrar Hudairi
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Muddathir H. Hamad
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali H. Alwadei
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
- Pediatric Neurology Department, National Neuroscience Institute, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Reem M. Alhammad
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cheng J, Yao J, Zhao S, Fu L, Zhang L, Jiang J. A riboflavin transporter deficiency presenting as pure red cell aplasia: a pediatric case report. Front Pediatr 2024; 12:1391245. [PMID: 38694724 PMCID: PMC11061399 DOI: 10.3389/fped.2024.1391245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Riboflavin transporter deficiency (RTD) is a rare genetic disorder that affects riboflavin transport, leading to impaired red blood cell production and resulting in pure red cell aplasia. Recognizing and understanding its clinical manifestations, diagnosis, and management is important. Case presentation A 2-year-old patient presented with pure red cell aplasia as the primary symptom of RTD. After confirming the diagnosis, rapid reversal of anemia was achieved after high-dose riboflavin treatment. Conclusion RTD often has an insidious onset, and neurological symptoms appear gradually as the disease progresses, making it prone to misdiagnosis. Genetic testing and bone marrow biopsy can confirm the diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Jiang
- Department of Hematology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Imannezhad S, Ghayoor Karimiani E, Sezavar M, Khademi GR, Naseri M, Ashrafzadeh F. Brown-Vialetto-Van Laere syndrome. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:141-146. [PMID: 38617395 PMCID: PMC11015728 DOI: 10.22037/ijcn.v18i2.37314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/12/2023] [Indexed: 04/16/2024]
Abstract
Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurodegenerative disorder of childhood. According to the previous reports, it has various primary signs and symptoms. Because of the simple treatment with riboflavin supplementation, it is important to have suspicious to this disease and begin treatment even before genetic test confirm. We report a five-year-old girl with BVVLS that manifest with hearing problems, first. There was obvious improvement in her disease clinical signs with riboflavin supplementation treatment.
Collapse
Affiliation(s)
- Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Sezavar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholam Reza Khademi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Naseri
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tranel ES, McGowan B, Drackley A, Epstein LG, Rao VK, Kuntz NL, Schwaede AN. A case report of riboflavin transporter deficiency: A novel heterozygous pathogenic variant in the SLC52A3 gene. Mol Genet Metab Rep 2024; 38:101051. [PMID: 38469093 PMCID: PMC10926195 DOI: 10.1016/j.ymgmr.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 03/13/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a neurodegenerative disorder that presents from infancy to adulthood with a progressive axonal neuropathy characterized by a variety of neurologic symptoms including hearing loss, weakness, bulbar palsy, and respiratory insufficiency. Pathogenic variants in SLC52A2 and SLC52A3 are implicated in the pathogenesis of RTD type 2 and 3, respectively. Early identification of this disorder is critical, as it is treatable with riboflavin supplementation. We describe a 16-year-old female with a phenotype consistent with RTD3 found to have a novel heterozygous SLC52A3 variant. Though RTD is typically considered an autosomal recessive condition, her heterozygous variant was thought to be disease causing after further genetic analysis and given her improvement in response to riboflavin supplementation. This case highlights the importance of reinterpretation of genetic testing, particularly when there is a high clinical suspicion for disease.
Collapse
Affiliation(s)
- Elizabeth S. Tranel
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Bridget McGowan
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Andy Drackley
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Leon G. Epstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Vamshi K. Rao
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Nancy L. Kuntz
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Abigail N. Schwaede
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| |
Collapse
|
8
|
Gupta J, Chowdhury SR, Jauhari P, Ragunathan K, Chakrabarty B, Jain V, Gulati S. Child Neurology: Allgrove Syndrome: An Intriguing Etiology of Motor Neuron Disease in Children. Neurology 2024; 102:e208049. [PMID: 38271654 DOI: 10.1212/wnl.0000000000208049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Motor neuron diseases are a rare group of neurodegenerative disorders with considerable phenotypic heterogeneity and a multitude of etiologies in the pediatric population. In this study, we report 2 unrelated adolescents (a boy and a girl) who presented with 4-6 years of progressive difficulty in walking, thinning of limbs, and gradually progressive darkening of the skin. Examination revealed generalized hyperpigmentation of skin and features suggestive of motor neuron involvement such as tongue atrophy, wasting of distal extremities, and brisk deep tendon reflexes. On detailed exploration for systemic involvement, history of dysphagia, inability to produce tears, and Addisonian crises were evident. An etiologic diagnosis of Allgrove syndrome, which is characterized by a triad of achalasia, alacrimia, and adrenal insufficiency was considered. Next-generation sequencing revealed pathogenic variants in the AAAS gene, confirming the diagnosis. Steroid replacement therapy was initiated along with relevant multidisciplinary referrals. The disease stabilized in the boy and a significant improvement was noted in the girl. These cases highlight the value of non-neurologic cues in navigating the etiologic complexities of motor neuron diseases in children and adolescents. It is imperative for neurologists to develop awareness of the diverse neurologic manifestations associated with Allgrove syndrome because they are often the first to be approached. A multidisciplinary team of experts including neurologists, endocrinologists, gastroenterologists, ophthalmologists, and dermatologists is essential for planning comprehensive care for these patients.
Collapse
Affiliation(s)
- Juhi Gupta
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sayoni Roy Chowdhury
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Jauhari
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kaushik Ragunathan
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Jain
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- From the Department of Pediatrics (J.G.), SMS Medical College Jaipur, Rajasthan; Madhukar Rainbow Children's Hospital (S.R.C.), New Delhi; Child Neurology Division (P.J., K.R., B.C., S.G.), Centre of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Department of Pediatrics, and Division of Pediatric Endocrinology (V.J.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Marioli C, Muzzi M, Colasuonno F, Fiorucci C, Cicolani N, Petrini S, Bertini E, Tartaglia M, Compagnucci C, Moreno S. Caspase-dependent apoptosis in Riboflavin Transporter Deficiency iPSCs and derived motor neurons. Cell Death Discov 2024; 10:54. [PMID: 38278809 PMCID: PMC10817897 DOI: 10.1038/s41420-024-01812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Riboflavin Transporter Deficiency (RTD) is a rare genetic, childhood-onset disease. This pathology has a relevant neurological involvement, being characterized by motor symptoms, ponto-bulbar paralysis and sensorineural deafness. Such clinical presentation is associated with muscle weakness and motor neuron (MN) degeneration, so that RTD is considered part of the MN disease spectrum. Based on previous findings demonstrating energy dysmetabolism and mitochondrial impairment in RTD induced Pluripotent Stem cells (iPSCs) and iPSC-derived MNs, here we address the involvement of intrinsic apoptotic pathways in disease pathogenesis using these patient-specific in vitro models by combined ultrastructural and confocal analyses. We show impaired neuronal survival of RTD iPSCs and MNs. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) documents severe alterations in patients' cells, including deranged mitochondrial ultrastructure, and altered plasma membrane and nuclear organization. Occurrence of aberrantly activated apoptosis is confirmed by immunofluorescence and TUNEL assays. Overall, our work provides evidence of a role played by mitochondrial dysfunction in RTD, and identifies neuronal apoptosis as a contributing event in disease pathogenesis, indicating intrinsic apoptosis pathways as possible relevant targets for more effective therapeutical approaches.
Collapse
Affiliation(s)
- Chiara Marioli
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Maurizio Muzzi
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Fiorella Colasuonno
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Cristian Fiorucci
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy.
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy.
| |
Collapse
|
10
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
11
|
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab (Lond) 2023; 20:42. [PMID: 37845732 PMCID: PMC10580530 DOI: 10.1186/s12986-023-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Riboflavin, or vitamin B2, is an essential nutrient that serves as a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). The binding of the FAD and/or FMN cofactors to flavoproteins is critical for regulating their assembly and activity. There are over 90 proteins in the human flavoproteome that regulate a diverse array of biochemical pathways including mitochondrial metabolism, riboflavin transport, ubiquinone and FAD synthesis, antioxidant signalling, one-carbon metabolism, nitric oxide signalling and peroxisome oxidative metabolism. The identification of patients with genetic variants in flavoprotein genes that lead to adult-onset pathologies remains a major diagnostic challenge. However, once identified, many patients with adult-onset inborn errors of metabolism demonstrate remarkable responses to riboflavin therapy. We review the structure:function relationships of mutant flavoproteins and propose new mechanistic insights into adult-onset riboflavin-responsive pathologies and metabolic dysregulations that apply to multiple biochemical pathways. We further address the vexing issue of how the inheritance of genetic variants in flavoprotein genes leads to an adult-onset disease with complex symptomologies and varying severities. We also propose a broad clinical framework that may not only improve the current diagnostic rates, but also facilitate a personalized approach to riboflavin therapy that is low cost, safe and lead to transformative outcomes in many patients.
Collapse
Affiliation(s)
- Chiara Murgia
- The School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, Australia.
| | - Ankush Dehlia
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Mark A Guthridge
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
12
|
Elks N, Wilmshurst JM, Raga SV. Normal Outcome With Prenatal Intervention for Riboflavin Transporter Defect. Pediatr Neurol 2023; 144:16-18. [PMID: 37116404 DOI: 10.1016/j.pediatrneurol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Riboflavin transporter deficiency is a rare but severe neurometabolic disorder. METHODS We report two siblings with pathogenic variants in SLC52A3 gene, resulting in riboflavin transporter 3 deficiency. RESULTS The first sibling was diagnosed at age 11 months with severe respiratory compromise and regression of developmental milestones. His symptoms significantly improved with riboflavin supplementation therapy. The younger sibling was diagnosed by antenatal genetic analysis; riboflavin supplementation was initiated in utero and continued from birth. Now at age two years, he remains clinically asymptomatic despite genetic confirmation of riboflavin transporter deficiency. CONCLUSIONS Antenatal riboflavin supplementation is a safe and effective treatment for the prevention of symptomatic manifestations of riboflavin transporter deficiency.
Collapse
Affiliation(s)
- Natasha Elks
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sharika V Raga
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; International Centre for Genomic Medicine in Neuromuscular Diseases Study, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Abstract
BACKGROUND To describe the clinical presentation with a focus on ocular manifestations and response to riboflavin supplementation of 3 patients with riboflavin transporter deficiency (RTD) caused by mutations in SLC52A2 ( SLC52A2- RTD). METHODS This is a retrospective review of records of 3 children (aged 18, n = 2 and age = 8, n = 1) with SLC52A2- RTD. Patients underwent comprehensive ophthalmic evaluations including color vision testing, pattern visual-evoked potentials (pVEPs, 1 patient) and spectral domain optical coherence tomography (SD-OCT) imaging. Patients received riboflavin supplements from the time of the molecular diagnosis of RTD. RESULTS Two unrelated 18-year-old patients with SLC52A2- RTD had a symptomatic onset with sensorineural hearing loss and auditory neuropathy/dys-synchrony since age 3 and 11, respectively. On examination 7 years after symptomatic onset, they showed subnormal visual acuities (20/30 and 20/60, both eyes, respectively), preserved color vision, and a thin but measurable retinal ganglion cell layer (GCL) and nerve fiber (RNFL). The inner and outer nuclear layers were normal. The asymptomatic SLC52A2- positive brother of one of these patients started riboflavin supplementation right after the molecular diagnosis and had normal vision and SD-OCTs 7 years later. Onset of riboflavin supplementation in one of the 2 symptomatic cases resulted in acute improvement of the pattern visual-evoked potential and vision. CONCLUSIONS Retinal ganglion cells and their axons are uniquely susceptible to RTD compared with other highly energy-dependent retinal neurons, such as photoreceptors, raising the possibility for alternative mechanisms of disease or protection. Riboflavin supplementation results in acute functional improvement of vision and long-term preservation of GCL and RNFL if initiated early.
Collapse
|
14
|
Cade BE, Gharib SA. Breath of Fresh Air: Toward Unraveling the Molecular Underpinnings of Sleep Apnea. Am J Respir Crit Care Med 2022; 206:1450-1451. [PMID: 35944212 PMCID: PMC9757082 DOI: 10.1164/rccm.202207-1410ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Brian E. Cade
- Division of Sleep and Circadian DisordersBrigham and Women’s HospitalBoston, Massachusetts,Division of Sleep MedicineHarvard Medical SchoolBoston, Massachusetts
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of WashingtonSeattle, Washington
| |
Collapse
|
15
|
Zhao S, Che F, Yang L, Zheng Y, Wang D, Yang Y, Wang Y. First report of paternal uniparental disomy of chromosome 8 with SLC52A2 mutation in Brown-vialetto-van laere syndrome type 2 and an analysis of genotype-phenotype correlations. Front Genet 2022; 13:977914. [PMID: 36186484 PMCID: PMC9520306 DOI: 10.3389/fgene.2022.977914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study reports the clinical and genetic features of Brown-Vialetto-Van Laere syndrome (BVVL) type 2 in a case of uniparental disomy of chromosome 8 in mainland China and analyzes the genotype-phenotype correlation through a review of the literature of BVVL type 2 cases. Methods: The clinical characteristics, treatment, and follow-up data of the patient were summarized, and the etiology was identified by whole-exome sequencing and gene chip analysis. Correlations between the genotype and phenotype were analyzed by collecting clinical and genetic data of published cases and our patient. Results: We identified a homozygous mutation in SLC52A2 (NM_001253815.2 c.1255G>A) by trio-WES. Sanger sequencing confirmed that his father was heterozygous and his mother was wild type. Subsequently, paternal uniparental disomy of chromosome 8 [UPD (8)pat] was confirmed by chromosomal microarray analysis.The patient received long-term oral riboflavin treatment (7 mg/kg.d) and was followed up for 40 months by which time the child’s bulbar palsy, ataxia, and motor function had improved. A review of the literature and statistical analysis found that the symptoms of BVVL type 2 appear at the earliest shortly after birth and at the latest at 10 years of age. The median age of onset was 2.5 years, but the overall delay in diagnosis was a median of 5.6 years. The most common symptoms were hearing loss (83.9%), followed by muscle weakness (80.6%), visual impairment (64.5%), and ataxia (61.3%). To date, a total of 32 mutations in the SLC52A2 gene have been reported, with the most common being a missense mutation. Mutations occur throughout the length of the gene apart from at the N-terminus. In patients with missense mutations, homozygous pattern was more likely to present with ataxia as the first symptom (p < 0.05), while compound heterozygous pattern was more likely to develop respiratory insufficiency during the course of disease (p < 0.001). Moreover, patients with one missense mutation located in inside the transmembrane domain were more likely to have respiratory insufficiency than those with mutations both inside and outside the domain (p < 0.05). Riboflavin supplementation was an important factor in determining prognosis (p < 0.001). Conclusion: We report the first UPD(8)pat with SLC52A2 homozygous pathogenic mutation case in BVVL type 2, which expand the mutation spectrum of gene.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Le Yang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Yanyan Zheng
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Dong Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| | - Yan Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| |
Collapse
|
16
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
17
|
Colasuonno F, Marioli C, Tartaglia M, Bertini E, Compagnucci C, Moreno S. New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines 2022; 10:biomedicines10061329. [PMID: 35740351 PMCID: PMC9219947 DOI: 10.3390/biomedicines10061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial. Recent studies have highlighted concurrent pathogenic contribution of cellular energy dysmetabolism and cytoskeletal derangement. In this context, patient specific RTD models, based on induced pluripotent stem cell (iPSC) technology, have provided evidence of redox imbalance, involving mitochondrial and peroxisomal dysfunction. Such oxidative stress condition likely causes cytoskeletal perturbation, associated with impaired differentiation of RTD motor neurons. In this review, we discuss the most recent findings obtained using different RTD models. Relevantly, the integration of data from innovative iPSC-derived in vitro models and invertebrate in vivo models may provide essential information on RTD pathophysiology. Such novel insights are expected to suggest custom therapeutic strategies, especially for those patients unresponsive to high-dose riboflavin treatments.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Correspondence: (C.C.); (S.M.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
- Correspondence: (C.C.); (S.M.)
| |
Collapse
|
18
|
Soares MC, Lins OG, Lima de Carvalho JR, de Sá CC, Van der Linden V, Covaleski APPM. Allgrove syndrome with amyotrophy. Pract Neurol 2021; 22:213-215. [PMID: 34969826 DOI: 10.1136/practneurol-2021-003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/04/2022]
Abstract
Allgrove syndrome is an autosomal recessive disease mostly caused by mutations in the AAAS gene. It has variable clinical features but its cardinal features comprise the triad of achalasia, alacrimia and adrenal insufficiency. It typically develops during the first decade of life, but some cases have second and third decades onset. We describe a 25-year-old woman with Allgrove syndrome who had progressive amyotrophy, achalasia, dry eyes and adrenal insufficiency since childhood. Awareness of its neurological manifestations and multisystem features helps to shorten the time for diagnosis and allow appropriate symptomatic treatment.
Collapse
Affiliation(s)
| | - Otávio Gomes Lins
- Neurology Department, Hospital das Clínicas de Pernambuco, Recife, Brazil
| | | | | | | | | |
Collapse
|
19
|
Mir A, Almudhry M, Alghamdi F, Albaradie R, Ibrahim M, Aldurayhim F, Alhedaithy A, Alamr M, Bawazir M, Mohammad S, Abdelhay S, Bashir S, Housawi Y. SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 2021; 141:81-99. [PMID: 34797406 DOI: 10.1007/s00439-021-02404-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia.
| | - Montaha Almudhry
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Raidah Albaradie
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mona Ibrahim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fatimah Aldurayhim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Abdullah Alhedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mushari Alamr
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Maryam Bawazir
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Sahar Mohammad
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Salma Abdelhay
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Shahid Bashir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Yousef Housawi
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Pinto WBVDR, Souza PVSD, Badia BML, Farias IB, Albuquerque Filho JMVD, Gonçalves EA, Machado RIL, Oliveira ASB. Adult-onset non-5q proximal spinal muscular atrophy: a comprehensive review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:912-923. [PMID: 34706022 DOI: 10.1590/0004-282x-anp-2020-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adult-onset spinal muscular atrophy (SMA) represents an expanding group of inherited neurodegenerative disorders in clinical practice. OBJECTIVE This review aims to synthesize the main clinical, genetic, radiological, biochemical, and neurophysiological aspects related to the classical and recently described forms of proximal SMA. METHODS The authors performed a non-systematic critical review summarizing adult-onset proximal SMA presentations. RESULTS Previously limited to cases of SMN1-related SMA type 4 (adult form), this group has now more than 15 different clinical conditions that have in common the symmetrical and progressive compromise of lower motor neurons starting in adulthood or elderly stage. New clinical and genetic subtypes of adult-onset proximal SMA have been recognized and are currently target of wide neuroradiological, pathological, and genetic studies. CONCLUSIONS This new complex group of rare disorders typically present with lower motor neuron disease in association with other neurological or systemic signs of impairment, which are relatively specific and typical for each genetic subtype.
Collapse
Affiliation(s)
| | - Paulo Victor Sgobbi de Souza
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Bruno Mattos Lombardi Badia
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Igor Braga Farias
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | | | - Eduardo Augusto Gonçalves
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Roberta Ismael Lacerda Machado
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| | - Acary Souza Bulle Oliveira
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil
| |
Collapse
|
21
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
22
|
The audiovestibular profile of Brown-Vialetto-Van Laere syndrome. The Journal of Laryngology & Otology 2021; 135:1000-1009. [PMID: 34496984 DOI: 10.1017/s0022215121002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome, a rare disorder associated with motor, sensory and cranial nerve neuropathy, is caused by mutations in riboflavin transporter genes SLC52A2 and SLC52A3. Hearing loss is a characteristic feature of Brown-Vialetto-Van Laere syndrome and has been shown in recent studies to be characterised by auditory neuropathy spectrum disorder. METHOD This study reports the detailed audiovestibular profiles of four cases of Brown-Vialetto-Van Laere syndrome with SLC52A2 and SLC52A3 mutations. All of these patients had auditory neuropathy spectrum disorder. RESULTS There was significant heterogeneity in vestibular function and in the benefit gained from cochlear implantation. The audiological response to riboflavin therapy was also variable, in contrast to generalised improvement in motor function. CONCLUSION We suggest that comprehensive testing of vestibular function should be conducted in Brown-Vialetto-Van Laere syndrome, in addition to serial behavioural audiometry as part of the systematic examination of the effects of riboflavin.
Collapse
|
23
|
Trinh TT, Blasco H, Maillot F, Bakhos D. Hearing loss in inherited metabolic disorders: A systematic review. Metabolism 2021; 122:154841. [PMID: 34333001 DOI: 10.1016/j.metabol.2021.154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Inherited metabolic disorders (IMDs) have been observed in individuals with hearing loss (HL), but IMDs are rarely the cause of syndromic HL. With early diagnosis, management of HL is more effective and cortical reorganization is possible with hearing aids or cochlear implants. This review describes relationships between IMDs and HL in terms of incidence, etiology of HL, pathophysiology, and treatment. Forty types of IMDs are described in the literature, mainly in case reports. Management and prognosis are noted where existing. We also describe IMDs with HL given age of occurrence of HL. Reviewing the main IMDs that are associated with HL may provide an additional clinical tool with which to better diagnose syndromic HL.
Collapse
Affiliation(s)
- T-T Trinh
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France.
| | - H Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| | - F Maillot
- Université François Rabelais, Tours, France; INSERM U1253, Tours, France; CHU de Tours, service de Médecine Interne, Tours, France
| | - D Bakhos
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| |
Collapse
|
24
|
Carey G, Kuchcinski G, Gauvrit F, Defebvre L, Nguyen S, Dhaenens CM, Dessein AF, Vianey-Saban C, Acquaviva C, Tard C. Three cases of adult-onset Brown-Vialetto-Van Laere syndrome: Novel variants in SLC52A3 gene and MRI abnormalities. Neuromuscul Disord 2021; 31:752-755. [PMID: 34384672 DOI: 10.1016/j.nmd.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Brown-Vialetto-Van Laere syndrome is a rare, autosomal, recessive neurological condition caused by variants in the riboflavin transporter genes SLC52A2 and SLC52A3. Here, we report on three cases. Case 1 was a 35-year-old woman from a consanguineous family who presented with progressive deafness, subacute multiple cranial nerve impairments (III, VII, IX, XII), and MRI abnormalities (including as hypersignal from the cranial nerves). The patient was homozygous for a novel SLC52A3variant. Case 2 was the woman's brother, who presented similar symptoms. Case 3 was an 18-year-old woman experiencing progressive hearing loss, bilateral steppage gait and a cranial nerves impairment (VII and XII). MRI revealed hypersignal in the root nerves and cauda equina. A novel heterozygous variant in SLC52A3 was identified. A subacute history of polyradiculoneuropathy along with progressive deafness, cranial nerve impairment, and MRI abnormalities should raise suspicion for Brown-Vialetto-Van Laere syndrome.
Collapse
Affiliation(s)
- Guillaume Carey
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neurology Department, Lille University Medical Center, Lille, France.
| | - Gregory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neuroradiology Department, Lille University Medical Center, Lille, France
| | - Fanny Gauvrit
- ENT Department, Lille University Medical Center, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neurology Department, Lille University Medical Center, Lille, France
| | - Sylvie Nguyen
- Centre de référence des maladies neuromusculaires Nord Est Ile de France, Lille University Medical Centre, Lille, France; Neuropediatric Department, Lille University Medical Center, Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Anne Frédérique Dessein
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Christine Vianey-Saban
- Service de Biochimie et Biologie Moléculaire, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Bron, France
| | - Cécile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Bron, France
| | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Centre de référence des maladies neuromusculaires Nord Est Ile de France, Lille University Medical Centre, Lille, France; Neurology Department, Lille University Medical Center, Lille, France
| |
Collapse
|
25
|
Gedik Soyuyuce O, Ayanoglu Aksoy E, Yapici Z. A case report of sudden-onset auditory neuropathy spectrum disorder associated with Brown-Vialetto-Van Laere syndrome (riboflavin transporter deficiency). Int J Audiol 2021; 61:258-264. [PMID: 33983862 DOI: 10.1080/14992027.2021.1921291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this paper is to describe a child with auditory neuropathy spectrum disorder (ANSD) associated with Brown-Vialetto-Van Laere (BVVL) syndrome, which is a rare, inherited, neurodegenerative disorder that is caused by defects in riboflavin transporter genes. DESIGN We report the audiological and clinical profile of a child who presented with a complaint of sudden loss of speech understanding associated with an atypical form of ANSD. He was later diagnosed with BVVL. STUDY SAMPLE An 11-year-old boy with ANSD associated with BVVL. RESULTS The patient's severe neurological symptoms improved within a year of supplementation with high doses of riboflavin. His fluctuating hearing loss and 0% WDS remained unchanged. The patient was able to use hearing aids without any discomfort after treatment initiation, but he stopped using them again due to a lack of benefit in speech understanding. Although cochlear implantation was recommended, the patient and his family decided not to consider it for another year since they still had hope for complete recovery. CONCLUSIONS Sudden-onset ANSD can be the earliest sign of undetected BVVL syndrome. Early detection of BVVL is crucial since all symptoms can be reversible with an early intervention of high doses of riboflavin supplementation.
Collapse
Affiliation(s)
| | | | - Zuhal Yapici
- Department of Neurology, Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
27
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
28
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
29
|
Niceforo A, Marioli C, Colasuonno F, Petrini S, Massey K, Tartaglia M, Bertini E, Moreno S, Compagnucci C. Altered cytoskeletal arrangement in induced pluripotent stem cells (iPSCs) and motor neurons from patients with riboflavin transporter deficiency. Dis Model Mech 2021; 14:dmm.046391. [PMID: 33468503 PMCID: PMC7927654 DOI: 10.1242/dmm.046391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
The cytoskeletal network plays a crucial role in differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient- specific induced Pluripotent Stem Cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance.The present study focusses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by impaired ability to repolymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca++ homeostasis, suggesting impaired differentiation.Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl-cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.
Collapse
Affiliation(s)
- Alessia Niceforo
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Fiorella Colasuonno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Keith Massey
- Science Director, Cure RTD Foundation, 6228 Northaven Road, Dallas, TX 75230, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Sandra Moreno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| |
Collapse
|
30
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Carreau C, Benoit C, Ahle G, Cauquil C, Roubertie A, Lenglet T, Cosgrove J, Meunier I, Veauville-Merllié A, Acquaviva-Bourdain C, Nadjar Y. Late-onset riboflavin transporter deficiency: a treatable mimic of various motor neuropathy aetiologies. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323304. [PMID: 33087424 DOI: 10.1136/jnnp-2020-323304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Riboflavin transporter deficiencies (RTDs), involving SLC52A3 and SLC52A2 genes, have recently been related to Brown-Vialetto-Van Laere (BVVL) syndrome, a hereditary paediatric condition associating motor neuropathy (MN) and deafness. BVVL/RTD has rarely been reported in adult patients, but is probably underdiagnosed due to poor knowledge and lack of awareness of this form of disease among neurologists. In this study, we aimed to investigate the phenotype and prognosis of RTD patients with late-onset MN. METHODS We retrospectively collected clinical, biological and electrophysiological data from all French RTD patients with MN onset after 10 years of age (n=6) and extracted data from 19 other similar RTD patients from the literature. RESULTS Adult RTD patients with MN had heterogeneous clinical presentations, potentially mimicking amyotrophic lateral sclerosis or distal hereditary motor neuropathy (56%), multinevritis with cranial nerve involvement (16%), Guillain-Barré syndrome (8%) and mixed motor and sensory neuronopathy syndromes (20%, only in SLC52A2 patients). Deafness was often diagnosed before MN (in 44%), but in some patients, onset began only with MN (16%). The pattern of weakness varied widely, and the classic pontobulbar palsy described in BVVL was not constant. Biochemical tests were often normal. The majority of patients improved under riboflavin supplementation (86%). INTERPRETATION Whereas late-onset RTD may mimic different acquired or genetic causes of motor neuropathies, it is a diagnosis not to be missed since high-dose riboflavin per oral supplementation is often highly efficient.
Collapse
Affiliation(s)
- Christophe Carreau
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Charline Benoit
- Department of Neurology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Guido Ahle
- Neurology, Hôpital Louis Pasteur, Colmar, Alsace, France
| | - Cécile Cauquil
- Neurology, Hôpital Bicêtre, Le Kremlin-Bicêtre, Île-de-France, France
| | - Agathe Roubertie
- Neuropediatrie, Hôpital Gui de Chauliac Pôle Neurosciences tête et cou, Montpellier, Languedoc-Roussillon Midi, France
| | - Timothée Lenglet
- Department of Neurophysiology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | | | - Isabelle Meunier
- Ophthalmology, Hôpital Gui de Chauliac, Montpellier, Languedoc-Roussillon, France
| | - Alice Veauville-Merllié
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cécile Acquaviva-Bourdain
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Yann Nadjar
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| |
Collapse
|
32
|
Chaudhry D, Chaudhry A, Muzaffar J, Monksfield P, Bance M. Cochlear Implantation Outcomes in Post Synaptic Auditory Neuropathies: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2020; 16:411-431. [PMID: 33136025 DOI: 10.5152/iao.2020.9035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To establish outcomes following cochlear implantation (CI) in patients with postsynaptic auditory neuropathy (AN). Systematic review and narrative synthesis. Databases searched: MEDLINE, PubMed, EMBASE, Web of Science, Cochrane Collection and ClinicalTrials.gov. No limits placed on language or year of publication. Review conducted in accordance with the PRISMA statement. Searches identified 98 studies in total, of which 14 met the inclusion criteria reporting outcomes in 25 patients with at least 28 CIs. Of these, 4 studies focused on Charcot-Marie-Tooth disease (CMT), 3 on Brown-Vialetto-Van-Laere syndrome (BVVL), 2 on Friedreich Ataxia (FRDA), 2 on Syndromic dominant optic atrophy (DOA+), 2 on Cerebellar ataxia - areflexia - pes cavus - optic atrophy - sensorineural hearing loss (CAPOS) syndrome, and 1 on Deafness-dystonia-optic neuronopathy (DDON) syndrome. All studies were Oxford Centre for Evidence Based Medicine (OCEBM) grade IV. Overall trend was towards good post-CI outcomes with 22 of the total 25 patients displaying modest to significant benefit. Hearing outcomes following CI in postsynaptic ANs are variable but generally good with patients showing improvements in hearing thresholds and speech perception. In the future, development of a clearer stratification system into pre, post, and central AN would have clinical and academic benefits. Further research is required to understand AN pathophysiology and develop better diagnostic tools for more accurate identification of lesion sites. Multicenter longitudinal studies with standardized comprehensive outcome measures including health-related quality of life data will be key in establishing a better understanding of short and long-term post-CI outcomes.
Collapse
Affiliation(s)
- Daoud Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Abdullah Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Cirak S, Daimagüler HS, Moawia A, Koy A, Yis U. On the differential diagnosis of neuropathy in neurogenetic disorders. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuropathy might be the presenting or accompanying sign in many neurogenetic and metabolic disorders apart from the classical-peripheral neuropathies or motor-neuron diseases. This causes a diagnostic challenge which is of particular relevance since a number of the underlying diseases could be treated. Thus, we attempt to give a clinical overview on the most common genetic diseases with clinically manifesting neuropathy.
Collapse
Affiliation(s)
- Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Hülya-Sevcan Daimagüler
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| | - Abubakar Moawia
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Uluc Yis
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
34
|
Pillai NR, Amin H, Gijavanekar C, Liu N, Issaq N, Broniowska KA, Bertuch AA, Sutton VR, Elsea SH, Scaglia F. Hematologic presentation and the role of untargeted metabolomics analysis in monitoring treatment for riboflavin transporter deficiency. Am J Med Genet A 2020; 182:2781-2787. [PMID: 32909658 DOI: 10.1002/ajmg.a.61851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
Riboflavin transporter deficiency (RTD) (MIM #614707) is a neurogenetic disorder with its most common manifestations including sensorineural hearing loss, peripheral neuropathy, respiratory insufficiency, and bulbar palsy. Here, we present a 2-year-old boy whose initial presentation was severe macrocytic anemia necessitating multiple blood transfusions and intermittent neutropenia; he subsequently developed ataxia and dysarthria. Trio-exome sequencing detected compound heterozygous variants in SLC52A2 that were classified as pathogenic and a variant of uncertain significance. Bone marrow evaluation demonstrated megaloblastic changes. Notably, his anemia and neutropenia resolved after treatment with oral riboflavin, thus expanding the clinical phenotype of this disorder. We reiterate the importance of starting riboflavin supplementation in a young child who presents with macrocytic anemia and neurological features while awaiting biochemical and genetic work up. We detected multiple biochemical abnormalities with the help of untargeted metabolomics analysis associated with abnormal flavin adenine nucleotide function which normalized after treatment, emphasizing the reversible pathomechanisms involved in this disorder. The utility of untargeted metabolomics analysis to monitor the effects of riboflavin supplementation in RTD has not been previously reported.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hitha Amin
- Texas Children's Hospital, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Niveen Issaq
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
35
|
Amir F, Atzinger C, Massey K, Greinwald J, Hunter LL, Ulm E, Kettler M. The Clinical Journey of Patients with Riboflavin Transporter Deficiency Type 2. J Child Neurol 2020; 35:283-290. [PMID: 31868069 DOI: 10.1177/0883073819893159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To identify symptoms and health care interactions with patients with riboflavin transporter deficiency (RTD) type 2 prior to diagnosis. METHODS Parents of children with riboflavin transporter deficiency type 2 (n = 10) were interviewed to collect data on the patient's clinical journey. RESULTS The average diagnostic delay was 27.6 months. Neurologists were the most commonly visited clinician (90%). Common symptoms during the first year of the patient's clinical journey included abnormal gait and/or ataxia (70%), nystagmus (50%), and upper body muscle weakness (40%). Prior to diagnosis, optic atrophy, sleep apnea, breath-holding spells, and dysphagia were commonly observed. Hearing loss was only reported in 40% of subjects prior to diagnosis. Riboflavin responsive megaloblastic anemia is reported for the first time. Mitochondrial disease was the most common suspected diagnosis (30%). CONCLUSION Despite clinical variability, common early symptoms of riboflavin transporter deficiency type 2 exist that can better allow clinicians to more rapidly identify riboflavin transporter deficiency type 2.
Collapse
Affiliation(s)
- Fatima Amir
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carrie Atzinger
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - John Greinwald
- Division of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa L Hunter
- Cincinnati Children's Hospital Medical Center, Center for Professional Excel Rsch & EBP, Cincinnati, OH, USA
| | - Elizabeth Ulm
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret Kettler
- Division of Audiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
36
|
Rabbani B, Bakhshandeh MK, Navaeifar MR, Abbaskhanian A, Soveizi M, Geravandpoor S, Mahdieh N. Brown-Vialetto-Van Laere syndrome and Fazio-Londe syndrome: A novel mutation and in silico analyses. J Clin Neurosci 2020; 72:342-349. [PMID: 31959559 DOI: 10.1016/j.jocn.2020.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
Abstract
Brown-Vialetto-Van Laere syndrome, a rare neurological disorder is due to SLC52A3 mutations. Here, the SLC52A3 protein and its mutations are in silico structurally and functionally analyzed among all the reported patients and a novel mutation is also reported. After clinical evaluations, SLC52A3 gene was sequenced and segregation analysis of the mutations was also checked. A comprehensive search was performed on the reported mutations of SLC52A3 gene. In silico structural and functional analyses of the mutations and interactome analyses of the protein were done using available software tools. Mutations of 37 affected individuals were identified. Thirty three mutations were determined. c.502A > C was a novel variant that it was segregated within the family. One mutation (c.639C > G) was responsible for 12% of the mutations. Segregation analysis, secondary structure, functional prediction achieved for the novel mutation showed pathogenicity of this variant. BVVL is a very rare disorder; SLC52A3 mutations are distributed among different populations and there might be one frequent mutation in this gene. BVVL should be more considered in Iran. In addition to segregation analysis, computational analyses could accelerate understanding the extent of pathogenicity of the novel variants.
Collapse
Affiliation(s)
- Bahareh Rabbani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Bakhshandeh
- Department of Pediatrics, Faculty of Medicine, Tehran Medical sciences, Islamic Azad university,Tehran, Iran
| | - Mohammad Reza Navaeifar
- Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Abbaskhanian
- Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdieh Soveizi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahpour Geravandpoor
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Mutlu B, Topçu MT, Çiprut A. A Case with Brown-Vialetto-Van Laere Syndrome: A Sudden Onset Auditory Neuropathy Spectrum Disorder. Turk Arch Otorhinolaryngol 2019; 57:201-205. [PMID: 32128519 DOI: 10.5152/tao.2019.4639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022] Open
Abstract
The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disorder that may present at all ages with sensorineural hearing loss, bulbar palsy and respiratory compromise. We describe a 6-year-old male patient who suffered bilateral sudden onset severe hearing loss for two years. Audiological investigations revealed sudden onset auditory neuropathy spectrum disorder bilaterally. He also had neurological complaints. During riboflavin therapy an improvement in hearing loss and the benefit of hearing aids were observed. In BVVLS, it is difficult to plan and apply auditory rehabilitation interventions and the results vary from patient to patient. In audiological evaluation, it should be borne in mind that subjective and objective tests are complemental. Early medical intervention and regular audiological follow-up are very important for effective hearing rehabilitation in the patients with BVVLS.
Collapse
Affiliation(s)
- Başak Mutlu
- Department of Audiology, İstanbul Medeniyet University School of Health Sciences, İstanbul, Turkey
| | - Merve Torun Topçu
- Department of Audiology, İstanbul Medeniyet University School of Health Sciences, İstanbul, Turkey
| | - Ayça Çiprut
- Department of Audiology, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
38
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|
39
|
Sung V, Downie L, Paxton GA, Liddle K, Birman CS, Chan WW, Cottier C, Harris A, Hunter M, Peadon E, Peacock K, Roddick L, Rose E, Saunders K, Amor DJ. Childhood Hearing Australasian Medical Professionals network: Consensus guidelines on investigation and clinical management of childhood hearing loss. J Paediatr Child Health 2019; 55:1013-1022. [PMID: 31524978 DOI: 10.1111/jpc.14508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/14/2019] [Accepted: 05/12/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Valerie Sung
- Prevention Innovation, Population Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of General Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Centre for Community Child Health, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Lilian Downie
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Royal Children's Hospital, Monash University, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Monash University, Melbourne, Victoria, Australia
| | - Georgia A Paxton
- Department of General Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Infection and Immunity, Clinical Paediatrics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karen Liddle
- Child Development Service, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Discipline of Paediatrics and Child Health, University of Queensland, Brisbane, Queensland, Australia
| | - Catherine S Birman
- ENT Department, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Sydney Cochlear Implant Centre, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Wei Wei Chan
- Department of Paediatrics, Gold Coast University Hospital, Gold Coast, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Carolyn Cottier
- The Hearing Support Service, Sydney Children's Hospital, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Alison Harris
- Child Development Service, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Discipline of Paediatrics and Child Health, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hunter
- Monash Genetics, Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth Peadon
- Deafness Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Kenneth Peacock
- Deafness Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Laurence Roddick
- Department of General Paediatrics, John Hunter Children's Hospital, Newcastle, New South Wales, Australia.,Department of Paediatric Respiratory Medicine, John Hunter Children's Hospital, Newcastle, New South Wales, Australia.,Discipline of Paediatrics, University of Newcastle, Newcastle, New South Wales, Australia
| | - Elizabeth Rose
- Department of Otolaryngology, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia.,Neurogenetics, Genetics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Otolaryngology, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Kerryn Saunders
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Paediatric Hearing Services, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - David J Amor
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Monash University, Melbourne, Victoria, Australia.,Neurodisability and Rehabilitation, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Neurodevelopment and Disability, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Wilmshurst JM, Ouvrier RA, Ryan MM. Peripheral nerve disease secondary to systemic conditions in children. Ther Adv Neurol Disord 2019; 12:1756286419866367. [PMID: 31447934 PMCID: PMC6691669 DOI: 10.1177/1756286419866367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review is an overview of systemic conditions that can be associated with peripheral nervous system dysfunction. Children may present with neuropathic symptoms for which, unless considered, a causative systemic condition may not be recognized. Similarly, some systemic conditions may be complicated by comorbid peripheral neuropathies, surveillance for which is indicated. The systemic conditions addressed in this review are critical illness polyneuropathy, chronic renal failure, endocrine disorders such as insulin-dependent diabetes mellitus and multiple endocrine neoplasia type 2b, vitamin deficiency states, malignancies and reticuloses, sickle cell disease, neurofibromatosis, connective tissue disorders, bowel dysmotility and enteropathy, and sarcoidosis. In some disorders presymptomatic screening should be undertaken, while in others there is no benefit from early detection of neuropathy. In children with idiopathic peripheral neuropathies, systemic disorders such as celiac disease should be actively excluded. While management is predominantly focused on symptomatic care through pain control and rehabilitation, some neuropathies improve with effective control of the underlying etiology and in a small proportion a more targeted approach is possible. In conclusion, peripheral neuropathies can be associated with a diverse range of medical conditions and unless actively considered may not be recognized and inadequately managed.
Collapse
Affiliation(s)
- Jo M. Wilmshurst
- Department of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s, Hospital Neuroscience Institute, University of Cape Town, Klipfontein Road, Cape Town, Western Cape, 7700, South Africa
| | - Robert A. Ouvrier
- The Institute of Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 2019; 42:598-607. [PMID: 30793323 DOI: 10.1002/jimd.12053] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.
Collapse
Affiliation(s)
- Benjamin O'Callaghan
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Annet M Bosch
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Amsterdam, The Netherlands
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
42
|
Shi K, Shi Z, Yan H, Wang X, Yang Y, Xiong H, Gu Q, Wu Y, Jiang Y, Wang J. A Chinese pedigree with Brown-Vialetto-Van Laere syndrome due to two novel mutations of SLC52A2 gene: clinical course and response to riboflavin. BMC MEDICAL GENETICS 2019; 20:76. [PMID: 31064337 PMCID: PMC6505200 DOI: 10.1186/s12881-019-0811-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
Background Brown-Vialetto-Van Laere Syndrome (BVVLS), a rare neurological disorder characterized by motor, sensory, and cranial neuronopathies, is mainly associated with defective riboflavin transporters encoded by SLC52A2 and SLC52A3 genes. Clinical outcomes have been shown to be improved significantly by high-dose riboflavin supplementation. The aim of this study was to identify genetic causes and further evaluate the clinical course and response to riboflavin in a Chinese pedigree with BVVLS. Case presentation We report the novel compound heterozygous variants c.1328G>A p.(Cys443Tyr) and c.1022_1023insC p. (Leu341Profs*103) of SLC52A2 gene in a female proband who presented in our out-patient clinic at the age of one-year-old with progressive mental and motor regression, breath holding, and brain stem dysfunction including facial weakness, hearing loss, dysphagia. Following high-dose riboflavin supplementation, the respiratory insufficiency and mental, motor, and bulbar function improved. However, sensorineural hearing loss was not improved. The missense variant site was highly conserved. Both variants were not found in the population database gnomAD. The two variants were inherited from her mother and father, respectively. Both variants were predicted to be deleterious by Polyphen2, Mutation taster, and SIFT and were classified as likely pathogenic according to the ACMG guideline. Conclusions Two novel pathogenic variations of SLC52A2 gene were firstly found from a Chinese pedigree with BVVLS. Clinical outcomes could be improved by early diagnosis and riboflavin supplementation.
Collapse
Affiliation(s)
- Kaili Shi
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Department of Neurology, Children's Hospital of Shanxi, Taiyuan, 030013, China
| | - Zhen Shi
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing, 100034, China
| | | | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China. .,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100034, China.
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China. .,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100034, China.
| |
Collapse
|
43
|
Szczuko M, Ziętek M, Kulpa D, Seidler T. Riboflavin - properties, occurrence and its use in medicine. Pteridines 2019. [DOI: 10.1515/pteridines-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Riboflavin is built on an isoalloxazin ring, which contains three sixcarbon rings: benzoic, pyrazine and pyrimidine. Riboflavin is synthesized by some bacteria, but among humans and animals, the only source of flavin coenzymes (FAD, FMN) is exogenous riboflavin. Riboflavin transport in enterocytes takes place via three translocators encoded by the SLC52 gene. Deficiency of dietary riboflavin has wide ranging implications for the efficacy of other vitamins, the mechanism of cellular respiration, lactic acid metabolism, hemoglobin, nucleotides and amino acid synthesis. In studies it was found that, pharmacologic daily doses (100 mg) have the potential to react with light, which can have adverse cellular effects. Extrene caution should be exercised when using riboflavin as phototherapy in premature newborns. At the cellular level, riboflavin deficiency leads to increased oxidative stress and causes disorders in the glutathione recycling process. Risk factors for developing riboflavin deficinecy include pregnancy, malnutrition (including anorexia and other eating disorders, vegitarianism, veganism and alcoholism. Furthermore, elderly people and atheletes are also at risk of developing this deficiency. Widespread use of riboflavin in medicine, cancer therapy, treatment of neurodegenerative diseases, corneal ectasia and viral infections has resulted in the recent increased interest in this flavina.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Biochemistry and Human Nutrition , Pomeranian Medical University in Szczecin , Poland
| | - Maciej Ziętek
- Clinic of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin , Poland
| | - Danuta Kulpa
- Department of Genetics, Plant Breeding and Biotechnology , West Pomeranian University of Technology in Szczecin , Poland
| | - Teresa Seidler
- Department of Human Nutrition , West Pomeranian University of Technology in Szczecin , Poland
| |
Collapse
|
44
|
Sodium Butyrate Enhances Intestinal Riboflavin Uptake via Induction of Expression of Riboflavin Transporter-3 (RFVT3). Dig Dis Sci 2019; 64:84-92. [PMID: 30276569 PMCID: PMC6320279 DOI: 10.1007/s10620-018-5305-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Uptake of riboflavin (RF) by intestinal epithelial cells occurs via a specific carrier-mediated process that involves the apically localized RF transporter-3 (RFVT3). Previous studies have shown that sodium butyrate (NaB) affects intestinal uptake of other substrates and expression of their membrane transporters, but its effect on intestinal uptake of RF and expression of RFVT3 has not been examined. AIMS To investigate the effect of NaB on intestinal RF uptake process and expression of the RFVT3. METHODS Two experimental models were used in this study: Human-derived intestinal epithelial Caco-2 cells and ex vivo mouse colonoids. 3H-RF uptake assay, Western blot, RT-qPCR, and chromatin immunoprecipitation assay were performed. RESULTS Treating Caco-2 cells with NaB led to a significant increase in carrier-mediated RF uptake. This increase was associated with a significant induction in the level of expression of the hRFVT3 protein, mRNA, and heterogenous nuclear RNA (hnRNA). Similarly, treating mouse colonoids with NaB led to a marked increase in the level of expression of the mRFVT3 protein, mRNA, and hnRNA. NaB did not affect hRFVT3 mRNA stability, rather it caused significant epigenetic changes (histone modifications) in the SLC52A3 gene where an increase in H3Ac and a reduction in H3K27me3 levels were observed in the NaB-treated Caco-2 cells compared to untreated controls. CONCLUSION These findings demonstrate that NaB up-regulates intestinal RF uptake and that the effect appears to be mediated, at least in part, at the level of transcription of the SLC52A3 gene and may involve epigenetic mechanism(s).
Collapse
|
45
|
Yedavalli VS, Patil A, Shah P. Amyotrophic Lateral Sclerosis and its Mimics/Variants: A Comprehensive Review. J Clin Imaging Sci 2018; 8:53. [PMID: 30652056 PMCID: PMC6302559 DOI: 10.4103/jcis.jcis_40_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/12/2018] [Indexed: 12/16/2022] Open
Abstract
Motor neuron diseases (MNDs) are a debilitating subset of diseases, which result in progressive neuronal destruction and eventual loss of voluntary muscular function. These entities are often challenging to distinguish and accurately diagnose given overlapping clinical pictures and overall rarity. This group of diseases has a high morbidity and mortality rate overall and delineating each type of disease can help guide appropriate clinical management and improve quality of life for patients. Of all MNDs, amyotrophic lateral sclerosis (ALS) is by far the most common comprising 80%-90% of cases. However, other mimics and variants of ALS can appear similar both clinically and radiographically. In this review, we delve into the epidemiological, physiological, neuroimaging, and prognostic characteristics and management of ALS and its most common MND mimics/variants. In doing so, we hope to improve accuracy in diagnosis and potential management for this rare group of diseases.
Collapse
Affiliation(s)
- Vivek S Yedavalli
- Department of Neuroradiology and Neurointervention, Stanford University, Palo Alto, California, USA
| | - Abhijit Patil
- Department of Radiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Parinda Shah
- Department of Radiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| |
Collapse
|
46
|
Sinha T, Makia M, Du J, Naash MI, Al-Ubaidi MR. Flavin homeostasis in the mouse retina during aging and degeneration. J Nutr Biochem 2018; 62:123-133. [PMID: 30290331 PMCID: PMC7162609 DOI: 10.1016/j.jnutbio.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 09/01/2018] [Indexed: 12/14/2022]
Abstract
Involvement of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in cellular homeostasis has been well established for tissues other than the retina. Here, we present an optimized method to effectively extract and quantify FAD and FMN from a single neural retina and its corresponding retinal pigment epithelium (RPE). Optimizations led to detection efficiency of 0.1 pmol for FAD and FMN while 0.01 pmol for riboflavin. Interestingly, levels of FAD and FMN in the RPE were found to be 1.7- and 12.5-fold higher than their levels in the retina, respectively. Both FAD and FMN levels in the RPE and retina gradually decline with age and preceded the age-dependent drop in the functional competence of the retina as measured by electroretinography. Further, quantifications of retinal levels of FAD and FMN in different mouse models of retinal degeneration revealed differential metabolic requirements of these two factors in relation to the rate and degree of photoreceptor degeneration. We also found twofold reductions in retinal levels of FAD and FMN in two mouse models of diabetic retinopathy. Altogether, our results suggest that retinal levels of FAD and FMN can be used as potential markers to determine state of health of the retina in general and more specifically the photoreceptors.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Mustafa Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Jianhai Du
- Department of Ophthalmology and Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| |
Collapse
|
47
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Anderson P, Schaefer S, Henderson L, Bruce IA. Cochlear implantation in children with auditory neuropathy: Lessons from Brown–Vialetto–Van Laere syndrome. Cochlear Implants Int 2018; 20:31-38. [DOI: 10.1080/14670100.2018.1534035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Phoebe Anderson
- Manchester Medical School, University of Manchester, Manchester, UK
| | - Simone Schaefer
- Paediatric ENT Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Lise Henderson
- Richard Ramsden Centre for Auditory Implants, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Iain A. Bruce
- Paediatric ENT Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
49
|
Irumudomon O, Ghosh PS. Clinical Reasoning: Young adult with dysphagia and severe weight loss. Neurology 2018; 91:e1083-e1086. [PMID: 30201754 DOI: 10.1212/wnl.0000000000006169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Obehioya Irumudomon
- From the Department of Neurology (O.I.), Lahey Clinic, Burlington; and Department of Neurology (O.I., P.S.G.), Boston Children's Hospital, MA
| | - Partha S Ghosh
- From the Department of Neurology (O.I.), Lahey Clinic, Burlington; and Department of Neurology (O.I., P.S.G.), Boston Children's Hospital, MA.
| |
Collapse
|
50
|
Fazio-Londe syndrome in siblings from India with different phenotypes. Brain Dev 2018; 40:582-586. [PMID: 29501408 DOI: 10.1016/j.braindev.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fazio-Londe syndrome also called progressive bulbar palsy of childhood is a very rare motor neuron disease of pediatric age group characterized by progressive paralysis of lower cranial nerves. OBJECTIVE To describe Fazio-Londe syndrome in sibling with different phenotype. METHODS A 6 years old female child presented with inability to close eyes, difficulty in swallowing, respiratory muscle weakness and voice change since 5 yr of age. Examination showed lower motor neuron facial nerve palsy, absent gag reflex, tongue atrophy, fasciculation, limb wasting and exaggerated deep tendon reflexes. An 11 year old boy, elder sibling of the above child presented with similar complaints at 10 years of age, other than later onset and lack of respiratory problem. Genetic testing in both cases confirmed the diagnosis of Fazio-Londe Syndrome. CONCLUSION In any child who presents with progressive bulbar palsy with lower motor neuron facial palsy a diagnosis of Fazio-Londe Syndrome should be considered and family members should also be screened.
Collapse
|