1
|
He MF, Liu LH, Luo S, Wang J, Guo JJ, Wang PY, Zhai QX, He SL, Zou DF, Liu XR, Li BM, Ma HY, Qiao JD, Zhou P, He N, Yi YH, Liao WP. ZFHX3 variants cause childhood partial epilepsy and infantile spasms with favourable outcomes. J Med Genet 2024; 61:652-660. [PMID: 38508705 PMCID: PMC11228202 DOI: 10.1136/jmg-2023-109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.
Collapse
Affiliation(s)
- Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Juan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510120, China
| | - Su-Li He
- Department of Pediatrics, Shantou Chaonan Minsheng Hospital, Shantou 515000, China
| | - Dong-Fang Zou
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518029, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hai-Yan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
2
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
3
|
Huang P, Zhang L, Tang L, Ren Y, Peng H, Xiong J, Liu L, Xu J, Xiao Y, Li J, Mao D, Liu L. Analysis of Clinical and Genetic Characterization of Three Ataxia-Telangiectasia Pedigrees With Novel ATM Gene Mutations. Front Pediatr 2022; 10:877826. [PMID: 35586824 PMCID: PMC9108171 DOI: 10.3389/fped.2022.877826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The clinical manifestations of ataxia-telangiectasia (AT) are very complex and are easily misdiagnosed and missed. The purpose of this study was to explore the clinical characteristics and genetic features of five pediatric patients with AT from three pedigrees in china. METHODS Retrospectively collected and analyzed the clinical data and genetic testing results of five AT patients diagnosed by the Whole-exome sequencing followed by Sanger sequencing. The five patients with AT were from three pedigrees, including two female patients (case 1 and case 2) in pedigree I, one male patient (case 3) in pedigree II, and two male patients (case 4 and case 5) in pedigree III. According to the United Kingdom Association for Clinical Genomic Science Best Practice Guidelines for Variants Classification in Rare Disease 2020 to grade the genetic variants. RESULTS Five patients had mainly clinical presentations including unsteady gait, dysarthria, bulbar conjunctive telangiectasia, cerebellar atrophy, intellectual disability, stunted growth, increase of alpha-fetoprotein in serum, lymphopenia. Notably, one patient with classical AT presented dystonia as the first symptom. One patient had recurrent infections, five patients had serum Immunoglobulin (Ig) A deficiency, and two patients had IgG deficiency. In three pedigrees, we observed five pathogenic variants of the ATM gene, which were c.1339C>T (p.Arg447Ter), c.7141_7151delAATGGAAAAAT (p.Asn2381GlufsTer18), c.437_440delTCAA (p.Leu146GlnfsTer6), c.2482A>T (p.Lys828Ter), and c.5495_5496+2delAAGT (p.Glu1832GlyfsTer4). Moreover, the c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT were previously unreported variants. CONCLUSIONS Pediatric patients with classical AT may present dystonia as the main manifestation, or even a first symptom, besides typical cerebellar ataxia, bulbar conjunctive telangiectasia, etc. Crucially, we also found three novel pathogenic ATM gene variants (c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT), expanding the ATM pathogenic gene mutation spectrum.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Xie GH, Dai HJ, Liu F, Zhang YP, Zhu L, Nie JJ, Wu JH. A Dual Role of ATM in Ischemic Preconditioning and Ischemic Injury. Cell Mol Neurobiol 2019; 40:785-799. [PMID: 31845160 DOI: 10.1007/s10571-019-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein is regarded as the linchpin of cellular defenses to stress. Deletion of ATM results in strong oxidative stress and degenerative diseases in the nervous system. However, the role of ATM in neuronal ischemic preconditioning and lethal ischemic injury is still largely unknown. In this study, mice cortical neurons preconditioned with sublethal exposure to oxygen glucose deprivation (OGD) exhibited ATM/glucose-6-phosphate dehydrogenase pathway activation. Additionally, pharmacological inhibition of ATM prior to the preconditioning reversed neuroprotection provided by preconditioning in vitro and in vivo. Meanwhile, we found that ATM/P53 pro-apoptosis pathway was driven by lethal OGD injury, and pharmacological inhibition of ATM during fatal oxygen-glucose deprivation/reperfusion injury promoted neuronal survival. More importantly, inhibition of ATM activity after cerebral ischemia protected against cerebral ischemic-reperfusion damage in mice. In conclusion, our data show the dual role of ATM in neuronal ischemic preconditioning and lethal ischemic injury, involving in the protection of ischemic preconditioning, but promoting neuronal death in lethal ischemic injury. Thus, the present study provides new opportunity for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guang-Hui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Jun Dai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Liu
- General surgery department of Xinhua Hospital of Hubei Province, Wuhan, 430015, China
| | - Ying-Pei Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Li Zhu
- Department of Pharmacy, Tongren Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Jie Nie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China
| | - Jian-Hua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
High-throughput epitope profiling of antibodies in the plasma of Alzheimer's disease patients using random peptide microarrays. Sci Rep 2019; 9:4587. [PMID: 30872784 PMCID: PMC6418098 DOI: 10.1038/s41598-019-40976-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
The symptoms of Alzheimer's disease (AD), a major cause of dementia in older adults, are linked directly with neuronal cell death, which is thought to be due to aberrant neuronal inflammation. Autoantibodies formed during neuronal inflammation show excellent stability in blood; therefore, they may be convenient blood-based diagnostic markers of AD. Here, we performed microarray analysis of 29,240 unbiased random peptides to be used for comprehensive screening of AD-specific IgG and IgM antibodies in the blood. The results showed that (1) sequence-specific and isotype-specific antibodies are regulated differentially in AD, and combinations of these antibodies showing high area under the receiver operating characteristic curve values (0.862-0.961) can be used to classify AD, (2) AD-specific IgG antibodies arise from IgM antibody-secreting cells that existed before disease onset and (3) target protein profiling of the antibodies identified some AD-related proteins, some of which are involved in AD-related signalling pathways. Therefore, we propose that these epitopes may facilitate the development of biomarkers for AD diagnosis and form the basis for a mechanistic study related to AD progression.
Collapse
|
6
|
Wang K, Hui Y, Zhang S, Wang M, Yan H, Zhu H, Qu L, Lan X, Pan C. A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Anim Biotechnol 2019; 31:174-180. [DOI: 10.1080/10495398.2018.1561459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hailong Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
8
|
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017; 87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.
Collapse
Affiliation(s)
- Jakub Chwastek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland.
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
9
|
Zhang X, Wu X, Jia W, Pan C, Li X, Lei C, Chen H, Lan X. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor (ATBF1) Gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1394-406. [PMID: 26323396 PMCID: PMC4554846 DOI: 10.5713/ajas.14.0860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/11/2015] [Accepted: 04/01/2015] [Indexed: 01/05/2023]
Abstract
The AT motif-binding factor (ATBF1) not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3) (PIAS3) to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1) gene (also known as POU1F1) critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs) (SNP 1-7) within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1). Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianfeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchao Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanying Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangcheng Li
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing 100194, China
| | - Chuzhao Lei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis Assoc Disord 2015; 28:226-33. [PMID: 24731980 DOI: 10.1097/wad.0000000000000022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defining the RNA transcriptome in Alzheimer Disease (AD) will help understand the disease mechanisms and provide biomarkers. Though the AD blood transcriptome has been studied, effects of white matter hyperintensities (WMH) were not considered. This study investigated the AD blood transcriptome and accounted for WMH. METHODS RNA from whole blood was processed on whole-genome microarrays. RESULTS A total of 293 probe sets were differentially expressed in AD versus controls, 5 of which were significant for WMH status. The 288 AD-specific probe sets classified subjects with 87.5% sensitivity and 90.5% specificity. They represented 188 genes of which 29 have been reported in prior AD blood and 89 in AD brain studies. Regulated blood genes included MMP9, MME (Neprilysin), TGFβ1, CA4, OCLN, ATM, TGM3, IGFR2, NOV, RNF213, BMX, LRRN1, CAMK2G, INSR, CTSD, SORCS1, SORL1, and TANC2. CONCLUSIONS RNA expression is altered in AD blood irrespective of WMH status. Some genes are shared with AD brain.
Collapse
|
11
|
Oue H, Miyamoto Y, Koretake K, Okada S, Doi K, Jung CG, Michikawa M, Akagawa Y. Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse. Gerodontology 2014; 33:308-14. [DOI: 10.1111/ger.12153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroshi Oue
- Department of Advanced Prosthodontics; Hiroshima University Graduate School of Biomedical & Health Sciences; Hiroshima Japan
| | - Yasunari Miyamoto
- Department of Advanced Prosthodontics; Hiroshima University Graduate School of Biomedical & Health Sciences; Hiroshima Japan
| | - Katsunori Koretake
- Department of Advanced Prosthodontics; Hiroshima University Graduate School of Biomedical & Health Sciences; Hiroshima Japan
| | - Shinsuke Okada
- Department of Advanced Prosthodontics; Hiroshima University Graduate School of Biomedical & Health Sciences; Hiroshima Japan
| | - Kazuya Doi
- Department of Advanced Prosthodontics; Hiroshima University Graduate School of Biomedical & Health Sciences; Hiroshima Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Makoto Michikawa
- Department of Biochemistry; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Yasumasa Akagawa
- Department of Prosthetic Dentistry; Ohu University School of Dentistry; Koriyama Japan
| |
Collapse
|
12
|
Sun X, Fu X, Li J, Xing C, Frierson HF, Wu H, Ding X, Ju T, Cummings RD, Dong JT. Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia 2014; 16:377-89. [PMID: 24934715 PMCID: PMC4198693 DOI: 10.1016/j.neo.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The ATBF1/ZFHX3 gene at 16q22 is the second most frequently mutated gene in human prostate cancer and has reduced expression or mislocalization in several types of human tumors. Nonetheless, the hypothesis that ATBF1 has a tumor suppressor function in prostate cancer has not been tested. In this study, we examined the role of ATBF1 in prostatic carcinogenesis by specifically deleting Atbf1 in mouse prostatic epithelial cells. We also examined the effect of Atbf1 deletion on gene expression and signaling pathways in mouse prostates. Histopathologic analyses showed that Atbf1 deficiency caused hyperplasia and mouse prostatic intraepithelial neoplasia (mPIN) primarily in the dorsal prostate but also in other lobes. Hemizygous deletion of Atbf1 also increased the development of hyperplasia and mPIN, indicating a haploinsufficiency of Atbf1. The mPIN lesions expressed luminal cell markers and harbored molecular changes similar to those in human PIN and prostate cancer, including weaker expression of basal cell marker cytokeratin 5 (Ck5), cell adhesion protein E-cadherin, and the smooth muscle layer marker Sma; elevated expression of the oncoproteins phospho-Erk1/2, phospho-Akt and Muc1; and aberrant protein glycosylation. Gene expression profiling revealed a large number of genes that were dysregulated by Atbf1 deletion, particularly those that encode for secretory and cell membrane proteins. The four signaling networks that were most affected by Atbf1 deletion included those centered on Erk1/2 and IGF1, Akt and FSH, NF-κB and progesterone and β-estradiol. These findings provide in vivo evidence that ATBF1 is a tumor suppressor in the prostate, suggest that loss of Atbf1 contributes to tumorigenesis by dysregulating membrane and secretory proteins and multiple signaling pathways, and provide a new animal model for prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
| | - Xiaokun Ding
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322.
| |
Collapse
|
13
|
Luo J, Mohammed I, Wärmländer SKTS, Hiruma Y, Gräslund A, Abrahams JP. Endogenous Polyamines Reduce the Toxicity of Soluble Aβ Peptide Aggregates Associated with Alzheimer’s Disease. Biomacromolecules 2014; 15:1985-91. [DOI: 10.1021/bm401874j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinghui Luo
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Inayathulla Mohammed
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | | | - Yoshitaka Hiruma
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Gorlaeus
Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| |
Collapse
|
14
|
Sun X, Li J, Dong FN, Dong JT. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One 2014; 9:e92746. [PMID: 24651376 PMCID: PMC3961433 DOI: 10.1371/journal.pone.0092746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
ATBF1/ZFHX3 is a large transcription factor that functions in development, tumorigenesis and other biological processes. ATBF1 is normally localized in the nucleus, but is often mislocalized in the cytoplasm in cancer cells. The mechanism underlying the mislocalization of ATBF1 is unknown. In this study, we analyzed the nuclear localization of ATBF1, and found that ectopically expressed ATBF1 formed nuclear body (NB)-like dots in the nucleus, some of which indeed physically associated with promyelocytic leukemia (PML) NBs. We also defined a 3-amino acid motif, KRK2615-2617, as the nuclear localization signal (NLS) for ATBF1. Interestingly, diffusely distributed nuclear SUMO1 proteins were sequestered into ATBF1 dots, which could be related to ATBF1's physical association with PML NBs, known SUMOylation hotspots. Furthermore, ATBF1 itself was SUMOylated. ATBF1 SUMOylation occurred at more than 3 lysine residues including K2349, K2806 and K3258 and was nuclear specific. Finally, the PIAS3 SUMO1 E3 ligase, which interacts with ATBF1 directly, diminished rather than enhanced ATBF1 SUMOylation, preventing the co-localization of ATBF1 with SUMO1 in the nucleus. These findings suggest that nuclear localization and SUMOylation are important for the transcription factor function of ATBF1, and that ATBF1 could cooperate with PML NBs to regulate protein SUMOylation in different biological processes.
Collapse
Affiliation(s)
- Xiaodong Sun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frederick N. Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer's disease. Mol Brain 2013; 6:44. [PMID: 24144318 PMCID: PMC3854070 DOI: 10.1186/1756-6606-6-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by loss of memory and cognitive function. A key neuropathological event in AD is the accumulation of amyloid-β (Aβ) peptide. The production and clearance of Aβ in the brain are regulated by a large group of genes. The expression levels of these genes must be fine-tuned in the brain to keep Aβ at a balanced amount under physiological condition. Misregulation of AD genes has been found to either increase AD risk or accelerate the disease progression. In recent years, important progress has been made in uncovering the regulatory elements and transcriptional factors that guide the expression of these genes. In this review, we describe the mechanisms of transcriptional regulation for the known AD genes and the misregualtion that leads to AD susceptibility.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 361102 Xiamen, Fujian, People's Republic of China.
| | | | | | | |
Collapse
|
16
|
CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response. PLoS One 2012; 7:e35638. [PMID: 22558186 PMCID: PMC3338453 DOI: 10.1371/journal.pone.0035638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/19/2012] [Indexed: 12/20/2022] Open
Abstract
DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage.
Collapse
|
17
|
Haghani M, Janahmadi M, Shabani M. Protective effect of cannabinoid CB1 receptor activation against altered intrinsic repetitive firing properties induced by Aβ neurotoxicity. Neurosci Lett 2012; 507:33-7. [DOI: 10.1016/j.neulet.2011.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/08/2011] [Accepted: 11/23/2011] [Indexed: 12/24/2022]
|