1
|
Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci 2021; 45:53-63. [PMID: 34852932 DOI: 10.1016/j.tins.2021.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.
Collapse
|
2
|
Peters OM, Weiss A, Metterville J, Song L, Logan R, Smith GA, Schwarzschild MA, Mueller C, Brown RH, Freeman M. Genetic diversity of axon degenerative mechanisms in models of Parkinson's disease. Neurobiol Dis 2021; 155:105368. [PMID: 33892050 PMCID: PMC8292971 DOI: 10.1016/j.nbd.2021.105368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.
Collapse
Affiliation(s)
- Owen M Peters
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lina Song
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Logan
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Eastern Nazarene College, Quincy, MA 02170, USA
| | - Gaynor A Smith
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michael A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marc Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
3
|
Loreto A, Hill CS, Hewitt VL, Orsomando G, Angeletti C, Gilley J, Lucci C, Sanchez-Martinez A, Whitworth AJ, Conforti L, Dajas-Bailador F, Coleman MP. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol Dis 2019; 134:104678. [PMID: 31740269 PMCID: PMC7611775 DOI: 10.1016/j.nbd.2019.104678] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Wallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson’s disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK.
| | - Ciaran S Hill
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK
| | - Victoria L Hewitt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, Ancona 60131, Italy
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, Ancona 60131, Italy
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK
| | - Cristiano Lucci
- School of Life Sciences, Medical School, University of Nottingham, NG7 2UH Nottingham, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Laura Conforti
- School of Life Sciences, Medical School, University of Nottingham, NG7 2UH Nottingham, UK
| | | | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, CB2 0PY Cambridge, UK.
| |
Collapse
|
4
|
Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, Orset C, Jacotot E, Brenner C, Duplus E. Nicotinamide riboside, a form of vitamin B 3, protects against excitotoxicity-induced axonal degeneration. FASEB J 2017; 31:5440-5452. [PMID: 28842432 DOI: 10.1096/fj.201700221rr] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.
Collapse
Affiliation(s)
- Pauline Vaur
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Bernard Brugg
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Mathias Mericskay
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Unité Signalisation et Physiopathologie Cardiovasculaire, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Zhenlin Li
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Equipe de Recherche Labellisée (ERL) U1164, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Denis Vivien
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Cyrille Orset
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Etienne Jacotot
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric Duplus
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France;
| |
Collapse
|
5
|
Williams PA, Harder JM, Foxworth NE, Cardozo BH, Cochran KE, John SWM. Nicotinamide and WLD S Act Together to Prevent Neurodegeneration in Glaucoma. Front Neurosci 2017; 11:232. [PMID: 28487632 PMCID: PMC5403885 DOI: 10.3389/fnins.2017.00232] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS, decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.
Collapse
Affiliation(s)
- Pete A Williams
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Jeffrey M Harder
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Nicole E Foxworth
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Brynn H Cardozo
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Kelly E Cochran
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Simon W M John
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA.,Department of Ophthalmology, Tufts University of MedicineBoston, MA, USA
| |
Collapse
|
6
|
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7:43846. [PMID: 28266613 PMCID: PMC5358788 DOI: 10.1038/srep43846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Collapse
Affiliation(s)
- Yousuf O Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gillian Bradley
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
7
|
Calkins DJ, Pekny M, Cooper ML, Benowitz L. The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res 2017; 157:28-33. [PMID: 28153739 DOI: 10.1016/j.exer.2017.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 11/15/2022]
Abstract
This review arose from a discussion of regenerative therapies to treat optic nerve degeneration in glaucoma at the 2015 Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration. In addition to the authors, participants included Jonathan Crowston, Andrew Huberman, Elaine Johnson, Richard Lu, Hemai Phatnami, Rebecca Sappington, and Don Zack. Glaucoma is a neurodegenerative disease of the optic nerve, and is the leading cause of irreversible blindness worldwide. The disease progresses as sensitivity to intraocular pressure (IOP) is conveyed through the optic nerve head to distal retinal ganglion cell (RGC) projections. Because the nerve and retina are components of the central nervous system (CNS), their intrinsic regenerative capacity is limited. However, recent research in regenerative therapies has resulted in multiple breakthroughs that may unlock the optic nerve's regenerative potential. Increasing levels of Schwann-cell derived trophic factors and reducing potent cell-intrinsic suppressors of regeneration have resulted in axonal regeneration even beyond the optic chiasm. Despite this success, many challenges remain. RGC axons must be able to form new connections with their appropriate targets in central brain regions and these connections must be retinotopically correct. Furthermore, for new axons penetrating the optic projection, oligodendrocyte glia must provide myelination. Additionally, reactive gliosis and inflammation that increase the regenerative capacity must be outweigh pro-apoptotic processes to create an environment within which maximal regeneration can occur.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205, USA.
| | - Milos Pekny
- Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 41345, Göteborg, Sweden
| | - Melissa L Cooper
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205, USA
| | - Larry Benowitz
- Departments of Neurosurgery and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Chang B, Quan Q, Lu S, Wang Y, Peng J. Molecular mechanisms in the initiation phase of Wallerian degeneration. Eur J Neurosci 2016; 44:2040-8. [PMID: 27062141 DOI: 10.1111/ejn.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon.
Collapse
Affiliation(s)
- Biao Chang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Qi Quan
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| |
Collapse
|
9
|
Li XZ, Sui CY, Chen Q, Chen XP, Zhang H, Zhou XP. Upregulation of cell surface estrogen receptor alpha is associated with the mitogen-activated protein kinase/extracellular signal-regulated kinase activity and promotes autophagy maturation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8832-8841. [PMID: 26464625 PMCID: PMC4583857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Recently, accumulating evidence has implicated the dysregulation of autophagy as underlying the pathophysiology of several neurodegenerative diseases. The human neuronal cell line SH-SY5Y was exposed to 1-Methyl-4-phenylpyridinium (MPP(+)). The mechanism is that the sustained activation of the MAPK/ERK pathway by MPP(+) alters autophagy selectively at the maturation step, significant increasing in autophagy formation and delaying in autophagy degradation in SHSY5Y cells. In this study, we provided evidences that estrogen was capable of promoting SHSY5Y cells survival in MPP(+)-treated group. In particular, the up-regulation of mERα, but not mERβ, was associated with a rapid and transient activation of ERK phosphorylation compatible with promoting autophagy maturation. The up-regulation of mERα changed the sustained activation of ERK phosphorylation in MPP(+)-treated group into a temporary activation. Taken together, these findings strongly support that the expression of mERα promotes the maturation of autophagosomes into functional autolysosomes by regulating ERK, determining SHSY5Y cells survival.
Collapse
Affiliation(s)
- Xue-Zhong Li
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| | - Chen-Yan Sui
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| | - Qiang Chen
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| | - Xiao-Peng Chen
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| | - Hong Zhang
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| | - Xiao-Ping Zhou
- Department of Neurology, Jiangsu University Affiliated People's Hospital Jiangsu, China
| |
Collapse
|
10
|
The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J Mol Neurosci 2014; 55:865-71. [PMID: 25352062 PMCID: PMC4353883 DOI: 10.1007/s12031-014-0440-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
The axon-protective Wallerian degeneration slow (WLDS) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLDS partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLDS after cut, suggesting that the maintenance of NAD levels in WldS neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1−/−), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.
Collapse
|
11
|
Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15:394-409. [DOI: 10.1038/nrn3680] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener 2014; 9:17. [PMID: 24885281 PMCID: PMC4016665 DOI: 10.1186/1750-1326-9-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/25/2014] [Indexed: 01/29/2023] Open
Abstract
6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-mediated axonal degeneration, a microdevice designed to isolate axons fluidically from cell bodies was used in conjunction with green fluorescent protein (GFP)-labeled DA neurons. Results showed that 6-OHDA quickly induced mitochondrial transport dysfunction in both DA and non-DA axons. This appeared to be a general effect on transport function since 6-OHDA also disrupted transport of synaptophysin-tagged vesicles. The effects of 6-OHDA on mitochondrial transport were blocked by the addition of the SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-cysteine (NAC) suggesting that free radical species played a role in this process. Temporally, microtubule disruption and autophagy occurred after transport dysfunction yet before DA cell death following 6-OHDA treatment. The results from the study suggest that ROS-mediated transport dysfunction occurs early and plays a significant role in inducing axonal degeneration in response to 6-OHDA treatment.
Collapse
|
13
|
O'Donnell KC, Lulla A, Stahl MC, Wheat ND, Bronstein JM, Sagasti A. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech 2014; 7:571-82. [PMID: 24626988 PMCID: PMC4007408 DOI: 10.1242/dmm.013185] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
α-synuclein (aSyn) expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf), many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS) delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in screening for novel disease-modifying compounds.
Collapse
Affiliation(s)
- Kelley C O'Donnell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
14
|
Zhao HK, Chen BY, Chang R, Wang JB, Ni F, Yang L, Dong XC, Sun SH, Zhao G, Fang W, Ma QR, Wang XL, Yu J. Vasonatrin peptide, a novel protector of dopaminergic neurons against the injuries induced by n-methyl-4-phenylpyridiniums. Peptides 2013; 49:117-22. [PMID: 24055805 DOI: 10.1016/j.peptides.2013.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Vasonatrin peptide (VNP), a novel manmade natriuretic peptide, is known as a cardiovascular active substance. However, its neuroeffects are largely unknown. Here, cultured dopaminergic neurons from ventral mesencephalon of mouse were exposed to N-methyl-4-phenylpyridinium (MPP(+)), and the effects of VNP on the neurotoxicity of MPP(+) were investigated. As a result, MPP(+) caused injuries in the dopaminergic neurons. VNP significantly reduced the cytotoxicity of MPP(+) by increasing axon number and length of dopaminergic neurons, and by enhancing the cell viability. Also, the MPP(+)-induced depolymerization of β-Tubulin III was attenuated by the treatment of VNP. In addition, VNP significantly increased the intracellular levels of cGMP. These effects of VNP were mimicked by 8-br-cGMP (a cell-permeable analog of cGMP), whereas inhibited by HS-142-1 (the antagonist of the particulate guanylyl cyclase-coupled natriuretic peptide receptors), or KT-5823 (a cGMP-dependent protein kinase inhibitor). Taken together, VNP attenuates the neurotoxicity of MPP(+) via guanylyl cyclase-coupled NPR/cGMP/PKG pathway, indicating that VNP might be a new effective reagent in the treatment of neuron degeneration of dopaminergic neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC. NMNATs, evolutionarily conserved neuronal maintenance factors. Trends Neurosci 2013; 36:632-40. [PMID: 23968695 DOI: 10.1016/j.tins.2013.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Proper brain function requires neuronal homeostasis over a range of environmental challenges. Neuronal activity, injury, and aging stress the nervous system, and lead to neuronal dysfunction and degeneration. Nevertheless, most organisms maintain healthy neurons throughout life, implying the existence of active maintenance mechanisms. Recent studies have revealed a key neuronal maintenance and protective function for nicotinamide mononucleotide adenylyl transferases (NMNATs). We review evidence that NMNATs protect neurons through multiple mechanisms in different contexts, and highlight functions that either require or are independent of NMNAT catalytic activity. We then summarize data supporting a role for NMNATs in neuronal maintenance and raise intriguing questions on how NMNATs preserve neuronal integrity and facilitate proper neural function throughout life.
Collapse
Affiliation(s)
- Yousuf O Ali
- The Cain Foundation Laboratories, Texas Children's Hospital, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
16
|
Bernstein AI, O'Malley KL. MPP+-induces PUMA- and p53-dependent, but ATF3-independent cell death. Toxicol Lett 2013; 219:93-8. [PMID: 23500530 DOI: 10.1016/j.toxlet.2013.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) and depletion of striatal dopamine (DA), leading to a range of motor symptoms, including resting tremor, rigidity, bradykinesia and postural abnormalities. The neurotoxin (MPTP) and its active metabolite, 1-methyl-4-phenylpyridinium (MPP(+)), cause dopaminergic cell loss in a variety of animal species and produce symptoms similar to those seen in PD. Our lab has shown that MPP(+) activates cell stress pathways, including the unfolded protein response (UPR) in mouse primary mesencephalic cultures. The BH3-only protein, PUMA (p53 upregulated mediator of apoptosis), has been shown to be activated in response to many cellular stresses, including endoplasmic reticulum (ER) stress and UPR, and to induce cell death. Therefore, we hypothesized that PUMA may mediate MPP(+) toxicity. To test this hypothesis, we compared the response of primary mesencephalic cultures from wild-type and PUMA deficient (-/-) mice to MPP(+). We also utilized cultures from p53 -/- and activating transcription factor 3 (ATF3) -/- mice to further elucidate the pathways involved. These studies revealed that PUMA and p53, but not ATF3, are required for MPP(+)-induced cell death, suggesting that UPR activation is parallel to the induction of MPP(+)-induced cell death.
Collapse
Affiliation(s)
- Alison I Bernstein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
17
|
Iwatsuki K, Arai T, Ota H, Kato S, Natsume T, Kurimoto S, Yamamoto M, Hirata H. Targeting anti-inflammatory treatment can ameliorate injury-induced neuropathic pain. PLoS One 2013; 8:e57721. [PMID: 23469058 PMCID: PMC3585184 DOI: 10.1371/journal.pone.0057721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-α plays important roles in immune system development, immune response regulation, and T-cell-mediated tissue injury. The present study assessed the net value of anti-tumor necrosis factor-α treatment in terms of functional recovery and inhibition of hypersensitivity after peripheral nerve crush injury. We created a right sciatic nerve crush injury model using a Sugita aneurysm clip. Animals were separated into 3 groups: the first group received only a skin incision; the second group received nerve crush injury and intraperitoneal vehicle injection; and the third group received nerve crush injury and intraperitoneal etanercept (6 mg/kg). Etanercept treatment improved recovery of motor nerve conduction velocity, muscle weight loss, and sciatic functional index. Plantar thermal and von Frey mechanical withdrawal thresholds recovered faster in the etanercept group than in the control group. On day 7 after crush injury, the numbers of ED-1-positive cells in crushed nerves of the control and etanercept groups were increased compared to that in the sham-treated group. After 21 days, ED-1-positive cells had nearly disappeared from the etanercept group. Etanercept reduced expression of interleukin-6 and monocyte chemotactic and activating factor-1 at the crushed sciatic nerve. These findings demonstrate the utility of etanercept, in terms of both enhancing functional recovery and suppressing hypersensitivity after nerve crush. Etanercept does not impede the onset or progression of Wallerian degeneration, but optimizes the involvement of macrophages and the secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Katsuyuki Iwatsuki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fang Y, Bonini NM. Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 2012; 28:575-97. [PMID: 22831639 DOI: 10.1146/annurev-cellbio-101011-155836] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axon degeneration is the pivotal pathological event of acute traumatic neural injury as well as many chronic neurodegenerative diseases. It is an active cellular program and yet molecularly distinct from cell death. Much effort is devoted toward understanding the nature of axon degeneration and promoting axon regeneration. However, the fundamental mechanisms of self-destruction of damaged axons remain unclear, and there are still few treatments for traumatic brain injury (TBI) or spinal cord injury (SCI). Genetically approachable model organisms such as Drosophila melanogaster, the fruit fly, have proven exceptionally successful in modeling human neurodegenerative diseases. More recently, this success has been extended into the field of acute axon injury and regeneration. In this review, we discuss recent findings, focusing on how these models hold promise for accelerating mechanistic insight into axon injury and identifying potential therapeutic targets for TBI and SCI.
Collapse
Affiliation(s)
- Yanshan Fang
- Howard Hughes Medical Institute and Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | | |
Collapse
|
19
|
Lorber B, Tassoni A, Bull ND, Moschos MM, Martin KR. Retinal ganglion cell survival and axon regeneration in WldS transgenic rats after optic nerve crush and lens injury. BMC Neurosci 2012; 13:56. [PMID: 22672534 PMCID: PMC3404964 DOI: 10.1186/1471-2202-13-56] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/06/2012] [Indexed: 11/22/2022] Open
Abstract
Background We have previously shown that the slow Wallerian degeneration mutation, whilst delaying axonal degeneration after optic nerve crush, does not protect retinal ganglion cell (RGC) bodies in adult rats. To test the effects of a combination approach protecting both axons and cell bodies we performed combined optic nerve crush and lens injury, which results in both enhanced RGC survival as well as axon regeneration past the lesion site in wildtype animals. Results As previously reported we found that the WldS mutation does not protect RGC bodies after optic nerve crush alone. Surprisingly, we found that WldS transgenic rats did not exhibit the enhanced RGC survival response after combined optic nerve crush and lens injury that was observed in wildtype rats. RGC axon regeneration past the optic nerve lesion site was, however, similar in WldS and wildtypes. Furthermore, activation of retinal glia, previously shown to be associated with enhanced RGC survival and axon regeneration after optic nerve crush and lens injury, was unaffected in WldS transgenic rats. Conclusions RGC axon regeneration is similar between WldS transgenic and wildtype rats, but WldS transgenic rats do not exhibit enhanced RGC survival after combined optic nerve crush and lens injury suggesting that the neuroprotective effects of lens injury on RGC survival may be limited by the WldS protein.
Collapse
|