1
|
Mlyczyńska E, Kurowska P, Rytelewska E, Zaobina E, Pich K, Kieżun M, Dobrzyń K, Kisielewska K, Kopij G, Smolińska N, Kamiński T, Rak A. Expression of visfatin in the ovarian follicles of prepubertal and mature gilts and in vitro effect of gonadotropins, insulin, steroids, and prostaglandins on visfatin levels. Theriogenology 2023; 211:28-39. [PMID: 37562189 DOI: 10.1016/j.theriogenology.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Ewa Zaobina
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Priester M, Visscher C, Fels M, Rohn K, Dusel G. Fibre supply for breeding sows and its effects on social behaviour in group-housed sows and performance during lactation. Porcine Health Manag 2020; 6:15. [PMID: 32518669 PMCID: PMC7273647 DOI: 10.1186/s40813-020-00153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fibre sources as feed components with specific physical characteristics like a high swelling capacity (SC), viscosity and water-binding capacity (WBC) have been discussed to affect sow behaviour and to have long-term effects on lactational performance. The present studies aim to analyse the effects of different fibre sources in diets for sows on behaviour in gestation, reproductive performance as well as piglet development. Methods Twenty-eight feedingstuffs (four grain varieties, 16 by-products, three oilseeds and five leguminous plants) were compared concerning swelling capacity, viscosity and water binding capacity to select fibre sources with optimal physical characteristics. Following this a digestibility study was carried out with eight castrates for determining digestibilities of gross energy, crude protein, crude fibre, crude fat and crude ash. Additionally, a practical feeding experiment during gestation was performed with 96 sows of Danish genetics. Two supplements for sows with different fibre sources were composed, namely a control diet (based on wheat bran and lignocellulose) and a test diet containing sugar beet pulp, alfalfa, rapeseed meal, soybean hulls, grape pomace and lignocellulose. Six pens with eight sows each were video-monitored for 2 weeks (evaluation of interactions and fights). Furthermore, the animals were subjected to weekly scoring to count skin injuries. To check the fibre effect on reproductive performance and piglet development, the body condition development of the sows as well as the number and weight of live and stillborn piglets, litter weight- and weaning weight of the litters were recorded. Results Digestibility of crude fibre increased significantly in the experimental group (58.8% ± 3.3 vs. 49.0% ± 4.3, p = 0.01). At the sow trial, there was a tendency to observe less aggressive interactions and fewer fights in sows in the fibre group without significance. No significant differences could be measured between the two groups concerning performance parameters of sows and piglets. Conclusion Only changing the fibre source in a gestational diet does not have significant effects on the sows´ behaviour and performance of sows and piglets in lactation. It should be investigated how the amount of fibre can be increased without having any negatives effects on the performance so that the positive effects on the behaviour of the sows become more obvious.
Collapse
Affiliation(s)
- Miriam Priester
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstraße 109, 55411 Bingen, Germany.,Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - Georg Dusel
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstraße 109, 55411 Bingen, Germany
| |
Collapse
|
4
|
Kraeling RR, Webel SK. Current strategies for reproductive management of gilts and sows in North America. J Anim Sci Biotechnol 2015; 6:3. [PMID: 25838898 PMCID: PMC4382856 DOI: 10.1186/2049-1891-6-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/04/2015] [Indexed: 11/12/2022] Open
Abstract
Many advances in genetic selection, nutrition, housing and disease control have been incorporated into modern pork production since the 1950s resulting in highly prolific females and practices and technologies, which significantly increased efficiency of reproduction in the breeding herd. The objective of this manuscript is to review the literature and current industry practices employed for reproductive management. In particular the authors focus on assisted reproduction technologies and their application for enhanced productivity. Modern maternal line genotypes have lower appetites and exceptional lean growth potential compared to females of 20 yr ago. Thus, nutrient requirements and management techniques and technologies, which affect gilt development and sow longevity, require continuous updating. Failure to detect estrus accurately has the greatest impact on farrowing rate and litter size. Yet, even accurate estrus detection will not compensate for the variability in the interval between onset of estrus and actual time of ovulation. However, administration of GnRH analogs in weaned sows and in gilts after withdrawal of altrenogest do overcome this variability and thereby synchronize ovulation, which makes fixed-time AI practical. Seasonal infertility, mediated by temperature and photoperiod, is a persistent problem. Training workers in the art of stockmanship is of increasing importance as consumers become more interested in humane animal care. Altrenogest, is used to synchronize the estrous cycle of gilts, to prolong gestation for 2–3 d to synchronize farrowing and to postpone post-weaning estrus. P.G. 600® is used for induction of estrus in pre-pubertal gilts and as a treatment to overcome seasonal anestrous. Sperm cell numbers/dose of semen is significantly less for post cervical AI than for cervical AI. Real-time ultrasonography is used to determine pregnancy during wk 3–5. PGF2α effectively induces farrowing when administered within two d of normal gestation length. Ovulation synchronization, single fixed-time AI and induced parturition may lead to farrowing synchronization, which facilitates supervision and reduces stillbirths and piglet mortality. Attendance and assistance at farrowing is important especially to ensure adequate colostrum consumption by piglets immediately after birth. New performance terminologies are presented.
Collapse
|