1
|
Ding M, Tyrchan C, Bäck E, Östling J, Schubert S, McCrae C. Combined siRNA and Small-Molecule Phenotypic Screening Identifies Targets Regulating Rhinovirus Replication in Primary Human Bronchial Epithelial Cells. SLAS DISCOVERY 2020; 25:634-645. [PMID: 32189556 DOI: 10.1177/2472555220909726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human rhinovirus (RV) is the most common cause of acute upper respiratory tract infections and has recently been shown to play a significant role in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). There is a significant unmet medical need for agents for the prevention and/or treatment of exacerbations triggered by human RV infection. Phenotypic drug discovery programs using different perturbation modalities, for example, siRNA, small-molecule compounds, and CRISPR, hold significant value for identifying novel drug targets. We have previously reported the identification of lanosterol synthase as a novel regulator of RV2 replication through a phenotypic screen of a library of siRNAs against druggable genes in normal human bronchial epithelial (NHBE) cells. Here, we describe a follow-up phenotypic screen of small-molecule compounds that are annotated to be pharmacological regulators of target genes that were identified to significantly affect RV2 replication in the siRNA primary screen of 10,500 druggable genes. Two hundred seventy small-molecule compounds selected for interacting with 122 target gene hits were screened in the primary RV2 assay in NHBE cells by quantifying viral replication via in situ hybridization followed by secondary quantitative PCR-based assays for RV2, RV14, and RV16. The described follow-up phenotypic screening allowed us to identify Fms-related tyrosine kinase 4 (FLT4) as a novel target regulating RV replication. We demonstrate that a combination of siRNA and small-molecule compound screening models is a useful phenotypic drug discovery approach for the identification of novel drug targets.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jörgen Östling
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | | | - Christopher McCrae
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
2
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Schaefer C, Mallela N, Seggewiß J, Lechtape B, Omran H, Dirksen U, Korsching E, Potratz J. Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm. PLoS One 2018; 13:e0191570. [PMID: 29385199 PMCID: PMC5792015 DOI: 10.1371/journal.pone.0191570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022] Open
Abstract
In the search for novel therapeutic targets, RNA interference screening has become a valuable tool. High-throughput technologies are now broadly accessible but their assay development from baseline remains resource-intensive and challenging. Focusing on this assay development process, we here describe a target discovery screen using pooled shRNA libraries and next-generation sequencing (NGS) deconvolution in a cell line model of Ewing sarcoma. In a strategy designed for comparative and synthetic lethal studies, we screened for targets specific to the A673 Ewing sarcoma cell line. Methods, results and pitfalls are described for the entire multi-step screening procedure, from lentiviral shRNA delivery to bioinformatics analysis, illustrating a complete model workflow. We demonstrate that successful studies are feasible from the first assay performance and independent of specialized screening units. Furthermore, we show that a resource-saving screen depth of 100-fold average shRNA representation can suffice to generate reproducible target hits despite heterogeneity in the derived datasets. Because statistical analysis methods are debatable for such datasets, we created ProFED, an analysis package designed to facilitate descriptive data analysis and hit calling using an aim-oriented profile filtering approach. In its versatile design, this open-source online tool provides fast and easy analysis of shRNA and other count-based datasets to complement other analytical algorithms.
Collapse
Affiliation(s)
- Christiane Schaefer
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Nikhil Mallela
- Institute of Bioinformatics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Birgit Lechtape
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Heymut Omran
- General Pediatrics, University Hospital Münster, Münster, Germany
| | - Uta Dirksen
- Department of Hematology and Oncology, Pediatrics III, West German Cancer Center, German Cancer Consortium (DKTK) Center Essen, University Hospital Essen, Essen, Germany
| | - Eberhard Korsching
- Institute of Bioinformatics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jenny Potratz
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
- General Pediatrics, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
4
|
Taylor J, Woodcock S. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way? ACTA ACUST UNITED AC 2015; 20:1040-51. [PMID: 26048892 DOI: 10.1177/1087057115590069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Abstract
For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery.
Collapse
Affiliation(s)
- Jessica Taylor
- Global HTS Centre, Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Simon Woodcock
- Global HTS Centre, Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| |
Collapse
|
5
|
Optimized PCR conditions and increased shRNA fold representation improve reproducibility of pooled shRNA screens. PLoS One 2012; 7:e42341. [PMID: 22870320 PMCID: PMC3411659 DOI: 10.1371/journal.pone.0042341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/03/2012] [Indexed: 12/22/2022] Open
Abstract
RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ∼10,000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses. We show that the technical reproducibility between PCR replicates from a pooled screen can be drastically improved by ensuring that PCR amplification steps are kept within the exponential phase and by using an amount of genomic DNA input in the reaction that maintains the average template copies per shRNA used during library transduction. Using these optimized PCR conditions, we then show that higher reproducibility of biological replicates is obtained by both microarray and next generation sequencing when screening with higher average shRNA fold representation. shRNAs that change abundance reproducibly in biological replicates (primary hits) are identified from screens performed with both 100- and 500-fold shRNA representation, however a higher percentage of primary hit overlap between screening replicates is obtained from 500-fold shRNA representation screens. While strong hits with larger changes in relative abundance were generally identified in both screens, hits with smaller changes were identified only in the screens performed with the higher shRNA fold representation at transduction.
Collapse
|
6
|
Guest ST, Yu J, Liu D, Hines JA, Kashat MA, Finley RL. A protein network-guided screen for cell cycle regulators in Drosophila. BMC SYSTEMS BIOLOGY 2011; 5:65. [PMID: 21548953 PMCID: PMC3113730 DOI: 10.1186/1752-0509-5-65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
Abstract
Background Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. Results We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. Conclusions Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival.
Collapse
Affiliation(s)
- Stephen T Guest
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tomimoto K, Fujita K, Ishibashi J, Imanishi S, Yamakawa M, Tanaka H. A Novel Method to Convert a DNA Fragment Inserted into a Plasmid to an Inverted Repeat Structure. Mol Biotechnol 2011; 50:18-27. [DOI: 10.1007/s12033-011-9408-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Bayona-Bafaluy MP, Sánchez-Cabo F, Fernández-Silva P, Pérez-Martos A, Enríquez JA. A genome-wide shRNA screen for new OxPhos related genes. Mitochondrion 2011; 11:467-75. [PMID: 21292037 DOI: 10.1016/j.mito.2011.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/24/2010] [Accepted: 01/24/2011] [Indexed: 11/16/2022]
Abstract
The mitochondrial oxidative phosphorylation (OxPhos) system produces most of the ATP required by the cell. The structural proteins of the OxPhos holoenzymes are well known, but important aspects of their biogenesis and regulation remain to be uncovered and a significant fraction of mitochondrial proteins have yet to be identified. We have used a high throughput, genome-wide RNA interference (RNAi) approach to identify new OxPhos-related genes. We transduced a mouse fibroblast cell line with a lentiviral-based shRNA-library, and screened the cell population for growth impairment in galactose-based medium, which requires an intact OxPhos system. Candidate genes were ranked according to their co-expression with known genes encoding OxPhos mitochondria-located proteins. For the top ranking candidates the cellular process in which they are involved was evaluated. Our results show that the use of genome-wide RNAi together with screening for deficient growth in galactose medium is a suitable approach to identifying OxPhos-related and cellular energy metabolism-related genes. Interestingly also ubiquitin-proteasome related genes were selected.
Collapse
Affiliation(s)
- María Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular. Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50013, Spain
| | | | | | | | | |
Collapse
|
9
|
Sigoillot FD, King RW. Vigilance and validation: Keys to success in RNAi screening. ACS Chem Biol 2011; 6:47-60. [PMID: 21142076 DOI: 10.1021/cb100358f] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 12 years since the process of RNA interference (RNAi) was first discovered, great progress has been made in understanding its mechanism and exploiting its ability to silence gene expression to study gene function at a genome-wide level. Its extensive use as a screening method has yielded many published lists of genes that play novel roles in higher eukaryotes. However, the usefulness of this information is potentially limited by the occurrence of unintended off-target effects. Here we review the potential causes of off-target effects and the impact of this phenomenon in interpreting the results of high-throughput RNAi screens. In addition to targeting the intended gene product, artificial short interfering RNAs (siRNAs) can produce off-target effects by down-regulating the expression of multiple mRNAs through microRNA-like targeting of the 3' untranslated region. We examine why this phenomenon can produce high hit rates in siRNA screens and why independent validation of screening results is critical for the approach to yield new biological insights.
Collapse
Affiliation(s)
- Frederic D. Sigoillot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Randall W. King
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Abstract
RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.
Collapse
Affiliation(s)
- Stephanie Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Bankhead A, Sach I, Ni C, LeMeur N, Kruger M, Ferrer M, Gentleman R, Rohl C. Knowledge based identification of essential signaling from genome-scale siRNA experiments. BMC SYSTEMS BIOLOGY 2009; 3:80. [PMID: 19653913 PMCID: PMC2731733 DOI: 10.1186/1752-0509-3-80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/05/2009] [Indexed: 11/10/2022]
Abstract
Background A systems biology interpretation of genome-scale RNA interference (RNAi) experiments is complicated by scope, experimental variability and network signaling robustness. Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established statistical framework used to associate RNA interference effectors to biologically annotated gene sets or pathways. These methods, however, do not directly take advantage of our growing understanding of the interactome. Furthermore, these methods can miss partial pathway activation and may be biased by protein complexes. Here we present a novel ORA, protein interaction permutation analysis (PIPA), that takes advantage of canonical pathways and established protein interactions to identify pathways enriched for protein interactions connecting RNAi hits. Results We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the standard Hypergeometric analysis including the FAK cytoskeletal remodeling pathway. Different branches of the FAK pathway are distinctly essential in HeLa versus TOV cell lines while other portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions associated with cell cycle regulation, anti-apoptosis, and signal transduction. Conclusion PIPA provides an analytical framework to interpret siRNA screen data by merging biologically annotated gene sets with the human interactome. As a result we identify pathways and signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This method provides a complementary approach to standard gene set enrichment that utilizes the additional knowledge of specific interactions within biological gene sets.
Collapse
Affiliation(s)
- Armand Bankhead
- Rosetta Inpharmatics LLC, a wholly owned subsidiary of Merck & Co,, Inc, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
He S, Zhang D, Cheng F, Gong F, Guo Y. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 2009; 36:2153-63. [PMID: 19117119 DOI: 10.1007/s11033-008-9429-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/08/2008] [Indexed: 01/07/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.
Collapse
Affiliation(s)
- Song He
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
13
|
Abstract
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Integrative Program in Quantitative Biology, University of California San Francisco, San Francisco, California, United States of America.
| |
Collapse
|