1
|
Wu Q, Zhang C, Xu F, Zang S, Wang D, Sun T, Su Y, Yang S, Ding Y, Que Y. Transcriptional Regulation of SugarCane Response to Sporisorium scitamineum: Insights from Time-Course Gene Coexpression and Ca 2+ Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10506-10520. [PMID: 38651833 PMCID: PMC11082935 DOI: 10.1021/acs.jafc.4c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.
Collapse
Affiliation(s)
- Qibin Wu
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Zhang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
| | - Yachun Su
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaolin Yang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan
Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research
Institute, Yunnan Academy of Agricultural
Sciences, Kaiyuan 661600, China
| | - Yinghong Ding
- College
of Landscape Architecture and Art, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Om K, Arias NN, Jambor CC, MacGregor A, Rezachek AN, Haugrud C, Kunz HH, Wang Z, Huang P, Zhang Q, Rosnow J, Brutnell TP, Cousins AB, Chastain CJ. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis. PLANT PHYSIOLOGY 2022; 190:1117-1133. [PMID: 35876823 PMCID: PMC9516741 DOI: 10.1093/plphys/kiac333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.
Collapse
Affiliation(s)
- Kuenzang Om
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Nico N Arias
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Chaney C Jambor
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Alexandra MacGregor
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Ashley N Rezachek
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Carlan Haugrud
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | | | - Zhonghui Wang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Quan Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Josh Rosnow
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | | |
Collapse
|
3
|
Straube R. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration. Biosystems 2017; 162:215-232. [PMID: 29107640 DOI: 10.1016/j.biosystems.2017.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks.
Collapse
Affiliation(s)
- Ronny Straube
- Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1, D-39106 Magdeburg, Germany
| |
Collapse
|
4
|
Eloundou-Mbebi JMO, Küken A, Omranian N, Kleessen S, Neigenfind J, Basler G, Nikoloski Z. A network property necessary for concentration robustness. Nat Commun 2016; 7:13255. [PMID: 27759015 PMCID: PMC5075777 DOI: 10.1038/ncomms13255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications. Absolute concentration robustness (ACR), independence of the steady-state concentration of a molecule from the environment, is difficult to predict. Here, the authors derive a network structure-based necessary condition for ACR, and suggest that metabolites satisfying the condition are prevalent.
Collapse
Affiliation(s)
- Jeanne M O Eloundou-Mbebi
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenber 1, 14476 Potsdam-Golm, Germany
| | - Anika Küken
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenber 1, 14476 Potsdam-Golm, Germany
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenber 1, 14476 Potsdam-Golm, Germany
| | | | | | - Georg Basler
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenber 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Dexter JP, Dasgupta T, Gunawardena J. Invariants reveal multiple forms of robustness in bifunctional enzyme systems. Integr Biol (Camb) 2015; 7:883-94. [PMID: 26021467 DOI: 10.1039/c5ib00009b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
6
|
Dasgupta T, Croll DH, Owen JA, Vander Heiden MG, Locasale JW, Alon U, Cantley LC, Gunawardena J. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J Biol Chem 2014; 289:13010-25. [PMID: 24634222 DOI: 10.1074/jbc.m113.546515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between "on" and "off" and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed "linear framework" for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.
Collapse
Affiliation(s)
- Tathagata Dasgupta
- From the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A recurring theme in biological circuits is the existence of components that are antagonistically bifunctional, in the sense that they simultaneously have two opposing effects on the same target or biological process. Examples include bifunctional enzymes that carry out two opposing reactions such as phosphorylating and dephosphorylating the same target, regulators that activate and also repress a gene in circuits called incoherent feedforward loops, and cytokines that signal immune cells to both proliferate and die. Such components are termed "paradoxical", and in this review we discuss how they can provide useful features to cell circuits that are otherwise difficult to achieve. In particular, we summarize how paradoxical components can provide robustness, generate temporal pulses, and provide fold-change detection, in which circuits respond to relative rather than absolute changes in signals.
Collapse
Affiliation(s)
- Yuval Hart
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
8
|
Rai A, Umashankar S, Swarup S. Plant metabolomics: from experimental design to knowledge extraction. Methods Mol Biol 2013; 1069:279-312. [PMID: 23996322 DOI: 10.1007/978-1-62703-613-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metabolomics is one of the most recent additions to the functional genomics approaches. It involves the use of analytical chemistry techniques to provide high-density data of metabolic profiles. Data is then analyzed using advanced statistics and databases to extract biological information, thus providing the metabolic phenotype of an organism. Large variety of metabolites produced by plants through the complex metabolic networks and their dynamic changes in response to various perturbations can be studied using metabolomics. Here, we describe the basic features of plant metabolic diversity and analytical methods to describe this diversity, which includes experimental workflows starting from experimental design, sample preparation, hardware and software choices, combined with knowledge extraction methods. Finally, we describe a scenario for using these workflows to identify differential metabolites and their pathways from complex biological samples.
Collapse
Affiliation(s)
- Amit Rai
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
9
|
Dexter JP, Gunawardena J. Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli. J Biol Chem 2012. [PMID: 23192354 DOI: 10.1074/jbc.m112.339226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important goal of systems biology is to develop quantitative models that explain how specific molecular features give rise to systems-level properties. Metabolic and regulatory pathways that contain multifunctional proteins are especially interesting to study from this perspective because they have frequently been observed to exhibit robustness: the ability for a system to perform its proper function even as levels of its components change. In this study, we use extensive biochemical data and algebraic modeling to develop and analyze a model that shows how robust behavior arises in the isocitrate dehydrogenase (IDH) regulatory system of Escherichia coli, which was shown in 1985 to experimentally exhibit robustness. E. coli IDH is regulated by reversible phosphorylation catalyzed by the bifunctional isocitrate dehydrogenase kinase/phosphatase (IDHKP), and the level of IDH activity determines whether carbon flux is directed through the glyoxylate bypass (for growth on two-carbon substrates) or the full tricarboxylic acid cycle. Our model, which incorporates recent structural data on IDHKP, identifies several specific biochemical features of the system (including homodimerization of IDH and bifunctionality of IDHKP) that provide a potential explanation for robustness. Using algebraic techniques, we derive an invariant that summarizes the steady-state relationship between the phospho-forms of IDH. We use the invariant in combination with kinetic data on IDHKP to calculate IDH activity at a range of total IDH levels and find that our model predicts robustness. Our work unifies much of the known biochemistry of the IDH regulatory system into a single quantitative framework and highlights the importance of constructing biochemically realistic models in systems biology.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|