1
|
Van Eyndhoven LC, Tel J. Revising immune cell coordination: Origins and importance of single-cell variation. Eur J Immunol 2022; 52:1889-1897. [PMID: 36250412 PMCID: PMC10092580 DOI: 10.1002/eji.202250073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Van Eyndhoven LC, Singh A, Tel J. Decoding the dynamics of multilayered stochastic antiviral IFN-I responses. Trends Immunol 2021; 42:824-839. [PMID: 34364820 DOI: 10.1016/j.it.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Type I Interferon (IFN-I) responses were first recognized for their role in antiviral immunity, but it is now widely appreciated that IFN-Is have many immunomodulatory functions, influencing antitumor responses, autoimmune manifestations, and antimicrobial defenses. Given these pivotal roles, it may be surprising that multilayered stochastic events create highly heterogeneous, but tightly regulated, all-or-nothing cellular decisions. Recently, mathematical models have provided crucial insights into the stochastic nature of antiviral IFN-I responses, which we critically evaluate in this review. In this context, we emphasize the need for innovative single-cell technologies combined with mathematical models to further reveal, understand, and predict the complexity of the IFN-I system in physiological and pathological conditions that may be relevant to a plethora of diseases.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Nikopoulou C, Parekh S, Tessarz P. Ageing and sources of transcriptional heterogeneity. Biol Chem 2019; 400:867-878. [DOI: 10.1515/hsz-2018-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Cellular heterogeneity is an important contributor to biological function and is employed by cells, tissues and organisms to adapt, compensate, respond, defend and/or regulate specific processes. Research over the last decades has revealed that transcriptional noise is a major driver for cell-to-cell variability. In this review we will discuss sources of transcriptional variability, in particular bursting of gene expression and how it could contribute to cellular states and fate decisions. We will highlight recent developments in single cell sequencing technologies that make it possible to address cellular heterogeneity in unprecedented detail. Finally, we will review recent literature, in which these new technologies are harnessed to address pressing questions in the field of ageing research, such as transcriptional noise and cellular heterogeneity in the course of ageing.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Joseph-Stelzmann-Str. 26 , D-50931 Cologne , Germany
| |
Collapse
|
4
|
Nikopoulou C, Panagopoulos G, Sianidis G, Psarra E, Ford E, Thanos D. The Transcription Factor ThPOK Orchestrates Stochastic Interchromosomal Interactions Required for IFNB1 Virus-Inducible Gene Expression. Mol Cell 2018; 71:352-361.e5. [PMID: 30017585 DOI: 10.1016/j.molcel.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 02/01/2023]
Abstract
Virus infection induces stochastic activation of the interferon-β gene. Three previously identified Alu-like DNA elements called NRCs (NF-κB reception centers) function by capturing and delivering NF-κB to the IFNB1 enhancer via stochastic interchromosomal interactions. We show that the transcription factor ThPOK binds cooperatively with NF-κB to NRCs and mediates their physical proximity with the IFNB1 gene via its ability to oligomerize when bound to DNA. ThPOK knockdown significantly decreased the frequency of interchromosomal interactions, NF-κB DNA binding to the IFNB1 enhancer, and virus-induced IFNB1 gene activation. We also demonstrate that cooperative DNA binding between ThPOK and NF-κB on the same face of the double DNA helix is required for interchromosomal interactions and distinguishes NRCs from various other Alu elements bearing κB sites. These studies show how DNA binding cooperativity of stereospecifically aligned transcription factors provides the necessary ultrasensitivity for the all-or-none stochastic cell responses to virus infection.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Giorgos Panagopoulos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Georgios Sianidis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Eleni Psarra
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Ethan Ford
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece.
| |
Collapse
|
5
|
Boada Y, Vignoni A, Picó J. Engineered Control of Genetic Variability Reveals Interplay among Quorum Sensing, Feedback Regulation, and Biochemical Noise. ACS Synth Biol 2017; 6:1903-1912. [PMID: 28581725 DOI: 10.1021/acssynbio.7b00087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stochastic fluctuations in gene expression trigger both beneficial and harmful consequences for cell behavior. Therefore, achieving a desired mean protein expression level while minimizing noise is of interest in many applications, including robust protein production systems in industrial biotechnology. Here, we consider a synthetic gene circuit combining intracellular negative feedback and cell-to-cell communication based on quorum sensing. Accounting for both intrinsic and extrinsic noise, stochastic simulations allow us to analyze the capability of the circuit to reduce noise strength as a function of its parameters. We obtain mean expression levels and noise strengths for all species under different scenarios, showing good agreement with system-wide available experimental data of protein abundance and noise in Escherichia coli. Our in silico experiments, validated by preliminary in vivo results, reveal significant noise attenuation in gene expression through the interplay between quorum sensing and negative feedback and highlight the differential role that they play in regard to intrinsic and extrinsic noise.
Collapse
Affiliation(s)
- Yadira Boada
- Institut
d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Vignoni
- Center
for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhaurstr. 108, 01307 Dresden, Germany
| | - Jesús Picó
- Institut
d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Miragaia RJ, Teichmann SA, Hagai T. Single-cell insights into transcriptomic diversity in immunity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Patil S, Fribourg M, Ge Y, Batish M, Tyagi S, Hayot F, Sealfon SC. Single-cell analysis shows that paracrine signaling by first responder cells shapes the interferon-β response to viral infection. Sci Signal 2015; 8:ra16. [PMID: 25670204 DOI: 10.1126/scisignal.2005728] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immune responses to viral infection are stochastic processes, which initiate in a limited number of cells that then propagate the response. A key component of the response to viral infection entails the synthesis and secretion of type I interferons (IFNs), including the early induction of the gene encoding IFN-β (Ifnb1). With single-cell analysis and mathematical modeling, we investigated the mechanisms underlying how increases in the amount of Ifnb1 mRNA per cell and in the numbers of cells expressing Ifnb1 calibrate the response to viral infection. We used single-cell, single-molecule assays to quantify the early induction of Ifnb1 expression (the Ifnb1 response) in human monocyte-derived dendritic cells infected with Newcastle disease virus, thus retaining the physiological stoichiometry of transcriptional regulators to both alleles of the Ifnb1 gene. We applied computational methods to extract the stochastic features that underlie the cell-to-cell variations in gene expression over time. Integration of simulations and experiments identified the role of paracrine signaling in increasing the number of cells that express Ifnb1 over time and in calibrating the immune response to viral infection.
Collapse
Affiliation(s)
- Sonali Patil
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fribourg
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mona Batish
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Fernand Hayot
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Tabbaa OP, Jayaprakash C. Mutual information and the fidelity of response of gene regulatory models. Phys Biol 2014; 11:046004. [DOI: 10.1088/1478-3975/11/4/046004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|