1
|
Jalandra R, Makharia GK, Sharma M, Kumar A. Inflammatory and deleterious role of gut microbiota-derived trimethylamine on colon cells. Front Immunol 2023; 13:1101429. [PMID: 36726978 PMCID: PMC9885123 DOI: 10.3389/fimmu.2022.1101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Trimethylamine (TMA) is produced by the intestinal microbiota as a by-product of metabolism of dietary precursors. TMA has been implicated in various chronic health conditions. However, the effect of TMA in the colon and the underlying mechanism was not clear. In this study, TMA exhibited toxic effects in vitro as well as in vivo. TMA-induced oxidative stress causes DNA damage, and compromised cell membrane integrity leading to the release of LDH outside the cells which ultimately leads to cell death. Besides, TMA also exhibited pronounced increase in cell cycle arrest at G2/M phase in both HCT116 and HT29 cell lines. TMA was found to be genotoxic and cytotoxic as the TMA concentration increased from 0.15 mM. A decreased ATP intracellular content was observed after 24 h, 48 h, and 72 h treatment in a time and dose-dependent manner. For in vivo research, TMA (100 mM, i.p. and intra-rectal) once a week for 12 weeks caused significant changes in cellular morphology of colon and rectum epithelium as assessed by H & E staining. TMA also significantly increased the infiltration of inflammatory cells in the colon and rectal epithelium indicating the severity of inflammation. In addition, TMA caused extensive mucosal damage and distortion in the epithelium, decrease in length of small intestine compared to control mice. In conclusion, these results highlight the detrimental effects of TMA in the colon and rectal epithelium.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Park JW, Park IH, Kim JM, Noh JH, Kim KA, Park JY. Rapid detection of FMO3 single nucleotide polymorphisms using a pyrosequencing method. Mol Med Rep 2021; 25:48. [PMID: 34913068 PMCID: PMC8674696 DOI: 10.3892/mmr.2021.12564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 02/02/2023] Open
Abstract
The present study aimed to develop a reliable pyrosequencing method to detect four single nucleotide polymorphisms (SNPs) of the flavin‑containing monooxygenase 3 (FMO3) gene and to compare the ethnic differences in their allelic frequencies. The pyrosequencing method was used to detect four FMO3 SNPs, namely, c.855C>T (N285N, rs909530), c.441C>T (S147S, rs1800822), c.923A>G (E308G, rs2266780) and c.472G>A (E158K, rs2266782). The allelic frequencies of these SNPs in 122 unrelated Korean subjects were as follows: i) 44.7% for c.855C>T; ii) 23.4% for c.441C>T; iii) 23.0% for c.923A>G; and iv) 27.1% for c.472G>A. Linkage disequilibrium (LD) analysis revealed that the SNPs c.923A>G and c.472G>A exhibited a strong LD (D'=0.8289, r2=0.5332). In conclusion, the pyrosequencing method developed in this study was successfully applied to detect the c.855C>T, c.441C>T, c.923A>G and c.472G>A SNPs of FMO3.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - In-Hwan Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Jong-Min Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Ji Hyeon Noh
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Alibrandi S, Nicita F, Donato L, Scimone C, Rinaldi C, D’Angelo R, Sidoti A. Adaptive Modelling of Mutated FMO3 Enzyme Could Unveil Unexplored Scenarios Linking Variant Haplotypes to TMAU Phenotypes. Molecules 2021; 26:molecules26227045. [PMID: 34834137 PMCID: PMC8618768 DOI: 10.3390/molecules26227045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Trimethylaminuria (TMAU) is a rare genetic disease characterized by the accumulation of trimethylamine (TMA) and its subsequent excretion trough main body fluids, determining the characteristic fish odour in affected patients. We realized an experimental study to investigate the role of several coding variants in the causative gene FMO3, that were only considered as polymorphic or benign, even if the available literature on them did not functionally explain their ineffectiveness on the encoded enzyme. Methods: Mutational analysis of 26 TMAU patients was realized by Sanger sequencing. Detected variants were, subsequently, deeply statistically and in silico characterized to determine their possible effects on the enzyme activity. To achieve this goal, a docking prediction for TMA/FMO3 and an unbinding pathway study were performed. Finally, a TMAO/TMA urine quantification by 1H-NMR spectroscopy was performed to support modelling results. Results: The FMO3 screening of all patients highlighted the presence of 17 variants distributed in 26 different haplotypes. Both non-sense and missense considered variants might impair the enzymatic kinetics of FMO3, probably reducing the interaction time between the protein catalytic site and TMA, or losing the wild-type binding site. Conclusions: Even if further functional assays will confirm our predictive results, considering the possible role of FMO3 variants with still uncertain effects, might be a relevant step towards the detection of novel scenarios in TMAU etiopathogenesis.
Collapse
Affiliation(s)
- Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Fabiana Nicita
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (S.A.); (F.N.); (C.S.); (C.R.); (R.D.); (A.S.)
| |
Collapse
|
4
|
Scimone C, Alibrandi S, Donato L, Giofrè SV, Rao G, Sidoti A, D'Angelo R. Antiretroviral treatment leading to secondary trimethylaminuria: Genetic associations and successful management with riboflavin. J Clin Pharm Ther 2020; 46:304-309. [PMID: 33247860 DOI: 10.1111/jcpt.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Trimethylaminuria is a metabolic disorder characterized by excessive excretion of trimethylamine in body fluids following FMO3 gene mutations. Secondary forms of the disease may be due to consumption of trimethylamine precursor-rich foods or metabolism of some xenobiotics. CASE SUMMARY A HIV patient developed secondary trimethylaminuria following antiretroviral treatment. Riboflavin supplementation ameliorated his phenotype. 1 H-NMR confirmed increased urine level of TMA. Several genes involved in choline catabolism harboured missense mutations. Riboflavin supplement improved enzymatic activity of mutated enzymes promoting TMA clearance. WHAT IS NEW AND CONCLUSION Antiretrovirals may increase the concentration of TMA precursors. The present study reports antiretroviral treatment as risk factor for such secondary trimethylaminuria. Riboflavin is an effective treatment.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giacomo Rao
- Prevention and Research division, INAIL, Rome, Italy
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Rosalia D'Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| |
Collapse
|
5
|
Abstract
Changes in human body systems influence metabolism and may cause disease. The intestinal microbiota influence health and is itself influenced by factors including diet and drugs. Investigation of the relationship of the intestinal microbiota and chronic conditions like coronary heart disease (CHD) has been facilitated by advances in sequencing technology. Some studies have identified changes in the composition and the metabolism of intestinal microbiota in patients with CHD, including increases in phyla Bacteroidetes and Proteobacteria and decreases in phyla Firmicutes and Fusobacteria. The ratio of two metabolites of intestinal bacteria, trimethylamine and trimethylamine N-oxide, has been found to be related to CHD. This review summarizes recent research to provide ideas for further research on the relationships between intestinal microbiota and CHD and on the preventive measures for CHD.
Collapse
|
6
|
Bouchemal N, Ouss L, Brassier A, Barbier V, Gobin S, Hubert L, de Lonlay P, Le Moyec L. Diagnosis and phenotypic assessment of trimethylaminuria, and its treatment with riboflavin: 1H NMR spectroscopy and genetic testing. Orphanet J Rare Dis 2019; 14:222. [PMID: 31533761 PMCID: PMC6751875 DOI: 10.1186/s13023-019-1174-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Trimethylaminuria (TMAU) is a metabolic disorder characterized by the excessive excretion of the malodorous compound trimethylamine (TMA). The diagnosis of TMAU is challenging because this disorder is situated at the boundary between biochemistry and psychiatry. Here, we used nuclear magnetic resonance spectroscopy to assess TMAU in 13 patients. We also sequenced the FMO3 gene in 11 of these patients. Treatment with vitamin B2 was prescribed. Results Two patients (aged 3 and 9 years at the initial consultation) had a particularly unpleasant body odor, as assessed by their parents and the attending physicians. The presence of high urine TMA levels confirmed the presence of a metabolic disorder. The two (unrelated) children carried compound heterozygous variants in the FMO3 gene. In both cases, vitamin B2 administration decreased TMA excretion and reduced body odor. The 11 adults complained of an unpleasant body odor, but the physicians did not confirm this. In all adult patients, the urine TMA level was within the normal range reported for control (non-affected) subjects, although two of the patients displayed an abnormally high proportion of oxidized TMA. Seven of the 9 tested adult patients had a hypomorphic variant of the FMO3 gene; the variant was found in the homozygous state, in the heterozygous state or combined with another hypomorphic variant. All 11 adults presented a particular psychological or psychiatric phenotype, with a subjective perception of unpleasant odor. Conclusions The results present the clinical and biochemical data of patients complaining of unpleasant body odor. Contrary to adult patients, the two children exhibited all criteria of recessively inherited trimethylaminuria, suspected by parents in infancy. B2 vitamin treatment dramatically improved the unpleasant body odor and the ratio of TMA/Cr vs TMAO/Cr in the urine in the children. Other patients presented a particular psychological or psychiatric phenotype.
Collapse
Affiliation(s)
- Nadia Bouchemal
- CSPBAT, UMR 7244, CNRS, Université Paris 13, Sorbonne Paris Cité, Bobigny, France.
| | - Lisa Ouss
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, APHP, Paris, France.,Service de Pédopsychiatrie, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Anaïs Brassier
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, APHP, Paris, France
| | - Valérie Barbier
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, APHP, Paris, France
| | - Stéphanie Gobin
- Unité de Génétique moléculaire, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Laurence Hubert
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, APHP, Paris, France
| | - Pascale de Lonlay
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, APHP, Paris, France
| | | |
Collapse
|
7
|
Guo Y, Hwang LD, Li J, Eades J, Yu CW, Mansfield C, Burdick-Will A, Chang X, Chen Y, Duke FF, Zhang J, Fakharzadeh S, Fennessey P, Keating BJ, Jiang H, Hakonarson H, Reed DR, Preti G. Genetic analysis of impaired trimethylamine metabolism using whole exome sequencing. BMC MEDICAL GENETICS 2017; 18:11. [PMID: 28196478 PMCID: PMC5310055 DOI: 10.1186/s12881-017-0369-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022]
Abstract
Background Trimethylaminuria (TMAU) is a genetic disorder whereby people cannot convert trimethylamine (TMA) to its oxidized form (TMAO), a process that requires the liver enzyme FMO3. Loss-of-function variants in the FMO3 gene are a known cause of TMAU. In addition to the inability to metabolize TMA precursors like choline, patients often emit a characteristic odor because while TMAO is odorless, TMA has a fishy smell. The Monell Chemical Senses Center is a research institute with a program to evaluate people with odor complaints for TMAU. Methods Here we evaluated ten subjects by (1) odor evaluation by a trained sensory panel, (2) analysis of their urine concentration of TMA relative to TMAO before and after choline ingestion, and (3) whole exome sequencing as well as subsequent variant analysis of all ten samples to investigate the genetics of TMAU. Results While all subjects reported they often emitted a fish-like odor, none had this malodor during sensory evaluation. However, all were impaired in their ability to produce >90% TMAO/TMA in their urine and thus met the criteria for TMAU. To probe for genetic causes, the exome of each subject was sequenced, and variants were filtered by genes with a known (FMO3) or expected effect on TMA metabolism function (other oxidoreductases). We filtered the remaining variants by allele frequency and predicated functional effects. We identified one subject that had a rare loss-of-function FMO3 variant and six with more common decreased-function variants. In other oxidoreductases genes, five subjects had four novel rare single-nucleotide polymorphisms as well as one rare insertion/deletion. Novel in this context means no investigators have previously linked these variants to TMAU although they are in dbSNP. Conclusions Thus, variants in genes other than FMO3 may cause TMAU and the genetic variants identified here serve as a starting point for future studies of impaired TMA metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0369-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiran Guo
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA.
| | - Liang-Dar Hwang
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Jason Eades
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Chung Wen Yu
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Corrine Mansfield
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Xiao Chang
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | | | - Fujiko F Duke
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Steven Fakharzadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Fennessey
- University of Colorado Health Sciences Center, Denver, CO, USA
| | - Brendan J Keating
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Key Laboratory of Genomics, Shenzhen, 518083, China.,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, 518083, China
| | - Hakon Hakonarson
- Center for Applied Genomics, the Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Res Cntr, Ste 1016H, Philadelphia, PA, 19104, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.
| | - George Preti
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Scimone C, Donato L, Rinaldi C, Sidoti A, D'Angelo R. First case of Currarino syndrome and trimethylaminuria: two rare diseases for a complex clinical presentation. J Dig Dis 2016; 17:628-632. [PMID: 27335202 DOI: 10.1111/1751-2980.12373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Molecular Genetics and Preventive Medicine, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Molecular Genetics applied to Neuroscience and Predictive Medicine, I.E.ME.S.T., Palermo, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Molecular Genetics and Preventive Medicine, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Molecular Genetics applied to Neuroscience and Predictive Medicine, I.E.ME.S.T., Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Molecular Genetics and Preventive Medicine, University of Messina, Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Molecular Genetics and Preventive Medicine, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Molecular Genetics applied to Neuroscience and Predictive Medicine, I.E.ME.S.T., Palermo, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Molecular Genetics and Preventive Medicine, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Abstract
We report the case of a 9-year-old boy referred to secondary care with an unusual presentation of a fishy odour to his hands, feet, saliva and urine. Laboratory investigations including urine analysis and genetic testing confirmed the diagnosis of trimethylaminuria. The patient was referred to a geneticist and dietician, and consequently treated with dietary modification. He now has an arguably much improved quality of life.
Collapse
Affiliation(s)
- Numaera Sabir
- Department of Paediatrics, Pennine Acute Trusts, Oldham, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, Central Manchester Foundation Trusts, Manchester, UK
| | - Beena Padmakumar
- Department of Paediatrics, Royal Oldham Hospital, Manchester, UK
| |
Collapse
|
10
|
Abstract
Body odour can be a manifestation of several metabolic diseases. Diagnosis may be difficult because the disease is often unknown to the doctor. We present a child observed in a general paediatric clinic for bad body odour after eating fish. Given the suspicion of trimethylaminuria, molecular study of flavin mono-oxygenase 3 gene was requested. A pathogenic mutation and polymorphism were identified, which could explain the complaint. Dietary and hygienic measures were imposed with symptom improvement.
Collapse
Affiliation(s)
- Alexandra Oliveira
- Hospital Pediátrico de Coimbra-Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Ana Faria
- Hospital Pediátrico de Coimbra-Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Mónica Oliva
- Hospital Pediátrico de Coimbra-Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|