1
|
Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. FRONTIERS IN PLANT SCIENCE 2015; 6:563. [PMID: 26322050 PMCID: PMC4531421 DOI: 10.3389/fpls.2015.00563] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/08/2015] [Indexed: 05/19/2023]
Abstract
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Collapse
Affiliation(s)
| | - Mehanathan Muthamilarasan
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt Lucia, QLD, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Rishu Sharma
- Department of Plant Pathology, Faculty of Agriculture, Bidhan Chandra Krishi ViswavidyalayaMohanpur, India
| | - Michael Abberton
- Genetic Resources Centre, International Institute of Tropical AgricultureIbadan, Nigeria
| | - Jacqueline Batley
- Centre for Integrated Legume Research, University of QueenslandBrisbane, QLD, Australia
| | - Alison Bentley
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - John Bryant
- CLES, Hatherly Laboratories, University of ExeterExeter, UK
| | - Hongwei Cai
- Forage Crop Research Institute, Japan Grassland Agriculture and Forage Seed AssociationNasushiobara, Japan
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural UniversityBeijing, China
| | - Mehmet Cakir
- Faculty of Science and Engineering, School of Biological Sciences and Biotechnology, Murdoch UniversityMurdoch, WA, Australia
| | - Leland J. Cseke
- Department of Biological Sciences, The University of Alabama in HuntsvilleHuntsville, AL, USA
| | - James Cockram
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - Ciro De Pace
- Department of Agriculture, Forests, Nature and Energy, University of TusciaViterbo, Italy
| | - Hannes Dempewolf
- Global Crop Diversity Trust, Platz der Vereinten NationenBonn, Germany
| | - Shelby Ellison
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Andy Greenland
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Anthony Hall
- Department of Botany and Plant Sciences, University of CaliforniaRiverside, Riverside, USA
| | - Kiyosumi Hori
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | | | - Mike W. Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Massimo Iorizzo
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | | | - Athole Marshall
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Sean Mayes
- Biotechnology and Crop Genetics, Crops for the FutureSemenyih, Malaysia
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural SciencesSundvagen, Sweden
| | | | - Philipp W. Simon
- Department of Horticulture, USDA-ARS, University of WisconsinMadison, WI, USA
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, Centro International de Agricultura TropicalCali, Columbia
| | | | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Stan D. Wullschleger
- Oak Ridge National Laboratory, Environmental Sciences Division, Climate Change Science InstituteOak Ridge, TN, USA
| | - Masahiro Yano
- National Agriculture and Food Research Organization, Institute of Crop ScienceTsukuba, Japan
| | - Manoj Prasad
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|