1
|
Ciordia S, Santos FM, Dias JML, Lamas JR, Paradela A, Alvarez-Sola G, Ávila MA, Corrales F. Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network. Talanta 2024; 274:125988. [PMID: 38569368 DOI: 10.1016/j.talanta.2024.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (μg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 μg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 μg of beads for sample preparation and long-term digestion (16h) with 0.15 μg Lys-C and 2.5 μg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - João M L Dias
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom; Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - José Ramón Lamas
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Gloria Alvarez-Sola
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Aymaz S. A new framework for early diagnosis of breast cancer using mammography images. Neural Comput Appl 2024; 36:1665-1680. [DOI: 10.1007/s00521-023-09156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/20/2023] [Indexed: 10/04/2024]
|
3
|
Nasser M, Yusof UK. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics (Basel) 2023; 13:diagnostics13010161. [PMID: 36611453 PMCID: PMC9818155 DOI: 10.3390/diagnostics13010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is one of the precarious conditions that affect women, and a substantive cure has not yet been discovered for it. With the advent of Artificial intelligence (AI), recently, deep learning techniques have been used effectively in breast cancer detection, facilitating early diagnosis and therefore increasing the chances of patients' survival. Compared to classical machine learning techniques, deep learning requires less human intervention for similar feature extraction. This study presents a systematic literature review on the deep learning-based methods for breast cancer detection that can guide practitioners and researchers in understanding the challenges and new trends in the field. Particularly, different deep learning-based methods for breast cancer detection are investigated, focusing on the genomics and histopathological imaging data. The study specifically adopts the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which offer a detailed analysis and synthesis of the published articles. Several studies were searched and gathered, and after the eligibility screening and quality evaluation, 98 articles were identified. The results of the review indicated that the Convolutional Neural Network (CNN) is the most accurate and extensively used model for breast cancer detection, and the accuracy metrics are the most popular method used for performance evaluation. Moreover, datasets utilized for breast cancer detection and the evaluation metrics are also studied. Finally, the challenges and future research direction in breast cancer detection based on deep learning models are also investigated to help researchers and practitioners acquire in-depth knowledge of and insight into the area.
Collapse
|
4
|
Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O. Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif Intell Med 2022; 127:102276. [DOI: 10.1016/j.artmed.2022.102276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
|
5
|
Yu CY, Mitrofanova A. Mechanism-Centric Approaches for Biomarker Detection and Precision Therapeutics in Cancer. Front Genet 2021; 12:687813. [PMID: 34408770 PMCID: PMC8365516 DOI: 10.3389/fgene.2021.687813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Biomarker discovery is at the heart of personalized treatment planning and cancer precision therapeutics, encompassing disease classification and prognosis, prediction of treatment response, and therapeutic targeting. However, many biomarkers represent passenger rather than driver alterations, limiting their utilization as functional units for therapeutic targeting. We suggest that identification of driver biomarkers through mechanism-centric approaches, which take into account upstream and downstream regulatory mechanisms, is fundamental to the discovery of functionally meaningful markers. Here, we examine computational approaches that identify mechanism-centric biomarkers elucidated from gene co-expression networks, regulatory networks (e.g., transcriptional regulation), protein-protein interaction (PPI) networks, and molecular pathways. We discuss their objectives, advantages over gene-centric approaches, and known limitations. Future directions highlight the importance of input and model interpretability, method and data integration, and the role of recently introduced technological advantages, such as single-cell sequencing, which are central for effective biomarker discovery and time-cautious precision therapeutics.
Collapse
Affiliation(s)
- Christina Y. Yu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Antonina Mitrofanova
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Zhang F, Deng CK, Wang M, Deng B, Barber R, Huang G. Identification of novel alternative splicing biomarkers for breast cancer with LC/MS/MS and RNA-Seq. BMC Bioinformatics 2020; 21:541. [PMID: 33272210 PMCID: PMC7713335 DOI: 10.1186/s12859-020-03824-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Background Alternative splicing isoforms have been reported as a new and robust class of diagnostic biomarkers. Over 95% of human genes are estimated to be alternatively spliced as a powerful means of producing functionally diverse proteins from a single gene. The emergence of next-generation sequencing technologies, especially RNA-seq, provides novel insights into large-scale detection and analysis of alternative splicing at the transcriptional level. Advances in Proteomic Technologies such as liquid chromatography coupled tandem mass spectrometry (LC–MS/MS), have shown tremendous power for the parallel characterization of large amount of proteins in biological samples. Although poor correspondence has been generally found from previous qualitative comparative analysis between proteomics and microarray data, significantly higher degrees of correlation have been observed at the level of exon. Combining protein and RNA data by searching LC–MS/MS data against a customized protein database from RNA-Seq may produce a subset of alternatively spliced protein isoform candidates that have higher confidence. Results We developed a bioinformatics workflow to discover alternative splicing biomarkers from LC–MS/MS using RNA-Seq. First, we retrieved high confident, novel alternative splicing biomarkers from the breast cancer RNA-Seq database. Then, we translated these sequences into in silico Isoform Junction Peptides, and created a customized alternative splicing database for MS searching. Lastly, we ran the Open Mass spectrometry Search Algorithm against the customized alternative splicing database with breast cancer plasma proteome. Twenty six alternative splicing biomarker peptides with one single intron event and one exon skipping event were identified. Further interpretation of biological pathways with our Integrated Pathway Analysis Database showed that these 26 peptides are associated with Cancer, Signaling, Metabolism, Regulation, Immune System and Hemostasis pathways, which are consistent with the 256 alternative splicing biomarkers from the RNA-Seq. Conclusions This paper presents a bioinformatics workflow for using RNA-seq data to discover novel alternative splicing biomarkers from the breast cancer proteome. As a complement to synthetic alternative splicing database technique for alternative splicing identification, this method combines the advantages of two platforms: mass spectrometry and next generation sequencing and can help identify potentially highly sample-specific alternative splicing isoform biomarkers at early-stage of cancer.
Collapse
Affiliation(s)
- Fan Zhang
- Vermont Biomedical Research Network and Department of Biology, University of Vermont, Burlington, VT, 05405, USA. .,Institute for Translational Research and Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Chris K Deng
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, IU School of Medicine, Indianapolis, IN, 46202, USA.,Indiana Center for Systems Biology and Personalized Medicine, Indianapolis, IN, 46202, USA
| | - Bin Deng
- Vermont Biomedical Research Network and Department of Biology, University of Vermont, Burlington, VT, 05405, USA.,Institute for Translational Research and Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
7
|
Xu L, Guo Z, Liu X. Prediction of essential genes in prokaryote based on artificial neural network. Genes Genomics 2019; 42:97-106. [DOI: 10.1007/s13258-019-00884-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
|
8
|
Giudice G, Petsalaki E. Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief Bioinform 2019; 20:767-777. [PMID: 29077858 PMCID: PMC6585152 DOI: 10.1093/bib/bbx141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in proteomics allow the accurate measurement of abundances for thousands of proteins and phosphoproteins from multiple samples in parallel. Therefore, for the first time, we have the opportunity to measure the proteomic profiles of thousands of patient samples or disease model cell lines in a systematic way, to identify the precise underlying molecular mechanism and discover personalized biomarkers, networks and treatments. Here, we review examples of successful use of proteomics and phosphoproteomics data sets in as well as their integration other omics data sets with the aim of precision medicine. We will discuss the bioinformatics challenges posed by the generation, analysis and integration of such large data sets and present potential reasons why proteomics profiling and biomarkers are not currently widely used in the clinical setting. We will finally discuss ways to contribute to the better use of proteomics data in precision medicine and the clinical setting.
Collapse
Affiliation(s)
- Girolamo Giudice
- European Molecular Biology Laboratory European Bioinformatics Institute
| | | |
Collapse
|
9
|
Ren G, Krawetz R. Applying computation biology and "big data" to develop multiplex diagnostics for complex chronic diseases such as osteoarthritis. Biomarkers 2016; 20:533-9. [PMID: 26809774 PMCID: PMC4819822 DOI: 10.3109/1354750x.2015.1105499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The data explosion in the last decade is revolutionizing diagnostics research and the healthcare industry, offering both opportunities and challenges. These high-throughput “omics” techniques have generated more scientific data in the last few years than in the entire history of mankind. Here we present a brief summary of how “big data” have influenced early diagnosis of complex diseases. We will also review some of the most commonly used “omics” techniques and their applications in diagnostics. Finally, we will discuss the issues brought by these new techniques when translating laboratory discoveries to clinical practice.
Collapse
Affiliation(s)
- Guomin Ren
- a McCaig Institute for Bone & Joint Health, University of Calgary , Calgary , AB , Canada
| | - Roman Krawetz
- a McCaig Institute for Bone & Joint Health, University of Calgary , Calgary , AB , Canada .,b Department of Surgery , University of Calgary , Calgary , AB , Canada , and.,c Department of Anatomy and Cell Biology , University of Calgary , Calgary , AB , Canada
| |
Collapse
|