1
|
Colacicco M, De Micco C, Macrelli S, Agrimi G, Janssen M, Bettiga M, Pisano I. Process scale-up simulation and techno-economic assessment of ethanol fermentation from cheese whey. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:124. [PMID: 39342290 PMCID: PMC11439329 DOI: 10.1186/s13068-024-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Production of cheese whey in the EU exceeded 55 million tons in 2022, resulting in lactose-rich effluents that pose significant environmental challenges. To address this issue, the present study investigated cheese-whey treatment via membrane filtration and the utilization of its components as fermentation feedstock. A simulation model was developed for an industrial-scale facility located in Italy's Apulia region, designed to process 539 m3/day of untreated cheese-whey. The model integrated experimental data from ethanolic fermentation using a selected strain of Kluyveromyces marxianus in lactose-supplemented media, along with relevant published data. RESULTS The simulation was divided into three different sections. The first section focused on cheese-whey pretreatment through membrane filtration, enabling the recovery of 56%w/w whey protein concentrate, process water recirculation, and lactose concentration. In the second section, the recovered lactose was directed towards fermentation and downstream anhydrous ethanol production. The third section encompassed anaerobic digestion of organic residue, sludge handling, and combined heat and power production. Moreover, three different scenarios were produced based on ethanol yield on lactose (YE/L), biomass yield on lactose, and final lactose concentration in the medium. A techno-economic assessment based on the collected data was performed as well as a sensitivity analysis focused on economic parameters, encompassing considerations on cheese-whey by assessing its economical impact as a credit for the simulated facility, dictated by a gate fee, or as a cost by considering it a raw material. The techno-economic analysis revealed different minimum ethanol selling prices across the three scenarios. The best performance was obtained in the scenario presenting a YE/L = 0.45 g/g, with a minimum selling price of 1.43 €/kg. Finally, sensitivity analysis highlighted the model's dependence on the price or credit associated with cheese-whey handling. CONCLUSIONS This work highlighted the importance of policy implementation in this kind of study, demonstrating how a gate fee approach applied to cheese-whey procurement positively impacted the final minimum selling price for ethanol across all scenarios. Additionally, considerations should be made about the implementation of the simulated process as a plug-in addition in to existing processes dealing with dairy products or handling multiple biomasses to produce ethanol.
Collapse
Affiliation(s)
- Mattia Colacicco
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
| | - Claudia De Micco
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
| | - Stefano Macrelli
- CIRI FRAME (Interdepartmental Centre for Industrial Research in Renewable Resources), University of Bologna, Via Sant'Alberto, 163, 48123, Ravenna, Italy
- Italbiotec Srl Società Benefit, 20126, Milan, Italy
| | - Gennaro Agrimi
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
- Interuniversity Consortium for Biotechnology (CIB), 34100, Trieste, Italy
| | - Matty Janssen
- Department of Technology Management and Economics, Division of Environmental Systems Analysis, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | | | - Isabella Pisano
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy.
- Interuniversity Consortium for Biotechnology (CIB), 34100, Trieste, Italy.
| |
Collapse
|
2
|
Tian K, Zhang J, Zhou C, Liu H, Pei Y, Zhang X, Yan X. Revealing the roles of carbonized humic acid in biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129506. [PMID: 37468005 DOI: 10.1016/j.biortech.2023.129506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
For low yield in dark fermentation (DF), in this study, the carbonized humic acid (CHA) was produced and added to DF for enhancing biohydrogen (bioH2) yield at mesophilic condition. The highest bioH2 yield was 151.08 mL/g glucose with the addition of CHA at 80 mg/L, which was 35.27% and 16.53% higher than those of 0 mg/L CHA and 80 mg/L mineral humic acid (MHA) groups, respectively. Electrons preferentially conducted via the butyrate pathway due to CHA amendments, which corresponded to the prediction of relevant functional genes. Furthermore, CHA possessed distinctive advantages over MHA, which acted as an electron shuttle to facilitate electron transfer, released metal ions as an essential signal mediator and favored the reduction of ferredoxin, obtaining more H2. The use of CHA in the field of H2-DF depicted the high-value utilization and industrial chain extension of MHA.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Liu
- Shandong Institute of Geophysical & Geochemical Exploration, Jinan 250013, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Zhao M, Zhou W, Wang Y, Wang J, Zhang J, Gong Z. Combination of simultaneous saccharification and fermentation of corn stover with consolidated bioprocessing of cassava starch enhances lipid production by the amylolytic oleaginous yeast Lipomyces starkeyi. BIORESOURCE TECHNOLOGY 2022; 364:128096. [PMID: 36229008 DOI: 10.1016/j.biortech.2022.128096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Highly integrated processes are crucial for the commercial success of microbial lipid production from low-cost substrates. Here, combination of simultaneous saccharification and fermentation (SSF) of corn stover with consolidated bioprocessing (CBP) of cassava starch by Lipomyces starkeyi was firstly developed as a novel strategy for lipid production. Starch was quickly hydrolyzed within 24 h by the amylolytic enzymes secreted by L. starkeyi to provide adequate fermentable sugars at the initial stage of culture, which eliminated the pre-hydrolysis step. More interestingly, synergistic effect for achieving higher lipid production by combined utilization of corn stover and cassava starch at relatively low enzyme dosage was realized, in comparison with the separate utilization of these two substrates. The fatty acid profiles indicated that lipid prepared by the combination strategy was suitable precursor for biodiesel production. The combined SSF&CBP strategy offers a simplified, highly-efficient, and economical route for co-valorization of low-cost substrates into lipids.
Collapse
Affiliation(s)
- Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
4
|
Yang J, Zhang H, Liu H, Zhang J, Pei Y, Zang L. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 351:127027. [PMID: 35314310 DOI: 10.1016/j.biortech.2022.127027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Low hydrogen (H2) yield via dark fermentation often occurs, being mainly due to H2 generation pathway shift. In this study, lanthanum-iron oxide nanoparticles (LaFeO3 NPs) were prepared to investigate their effects on bioH2 production. The highest H2 yield of 289.8 mL/g glucose was found at 100 mg/L of LaFeO3, being 47.6% higher than that from the control (196.3 mL/g glucose). The relative abundance of Firmicutes increased from 54.2% to 67.5%. The large specific surface area of LaFeO3 provided sufficient sites for the colonization of Firmicutes and increased the bacterial access to nutrients. Additionally, the La3+ gradually released from LaFeO3 NPs raised microbial transmembrane transport capacity, promoting glycolytic efficiency and Fe availability, thereby increasing hydrogenase content, and shifting the bioH2 evolution to butyrate pathway for more H2. This provides the novelty for biochemical utilization of La and new insights into the improved H2 yield amended with LaFeO3.
Collapse
Affiliation(s)
- Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Huiwen Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hui Liu
- Shandong Bluetown Analysis & Test Co., Ltd., Jinan 250101, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China.
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| |
Collapse
|
5
|
Souza Silverio M, Perez Calegari R, Ferreira Lima Leite GM, Maciel Lewandowski Meira Prado L, Chaves Martins B, Alberto da Silva E, Piotrovski Neto J, Gomig A, Sampaio Baptista A. VINASSE FROM THE BRAZILIAN LIGNOCELLULOSIC ETHANOL PROCESS: CHEMICAL COMPOSITION AND POTENTIAL FOR BIOPROCESSES. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS 2021. [DOI: 10.18011/bioeng2021v15n1p42-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Brazil is the second-largest producer of ethanol and the alcoholic fermentation wastes have become a concern for both environmental and economic reasons. Recently, the Brazilian industry has implemented the second generation (2G) process to attend the growing for biofuel. In this study, we aimed to investigate whether the 2G vinasse faces the same environmental challenges that first generation (1G) vinasses do, meaning vinasses from ethanol processes using sugarcane juice and/or molasses. Thus, vinasse was obtained from one of the recently-started 2G ethanol facilities in São Paulo State and then chemically characterized. Considering glycerol, mannitol, residual sugars, and organic acids concentrations altogether, it was determined that 2G vinasse had a total carbon source of 23,050 mg L-1 (compared to 4,800 mg L-1 in 1G vinasse). Magnesium, calcium, potassium, and others salts were determined as well. Based on its chemical composition, vinasses could be considered as nutrient sources for other bioprocesses. Finally, we brought some perspectives into bioprocesses with nutritional requirements that might be fully or partially provided by vinasses, leading to the production of bioenergy or bioproducts.
Collapse
Affiliation(s)
- Manuella Souza Silverio
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | - Rubens Perez Calegari
- University of São Paulo. Center of Nuclear Energy in Agriculture, Piracicaba, SP, Brazil
| | | | | | - Bianca Chaves Martins
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | - Eric Alberto da Silva
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | | | | | - Antonio Sampaio Baptista
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Abstract
Nowadays, the transport sector is one of the main sources of greenhouse gas (GHG) emissions and air pollution in cities. The use of renewable energies is therefore imperative to improve the environmental sustainability of this sector. In this regard, biofuels play an important role as they can be blended directly with fossil fuels and used in traditional vehicles’ engines. Bioethanol is the most used biofuel worldwide and can replace gasoline or form different gasoline-ethanol blends. Additionally, it is an important building block to obtain different high added-value compounds (e.g., acetaldehyde, ethylene, 1,3-butadiene, ethyl acetate). Today, bioethanol is mainly produced from food crops (first-generation (1G) biofuels), and a transition to the production of the so-called advanced ethanol (obtained from lignocellulosic feedstocks, non-food crops, or industrial waste and residue streams) is needed to meet sustainability criteria and to have a better GHG balance. This work gives an overview of the current production, use, and regulation rules of bioethanol as a fuel, as well as the advanced processes and the co-products that can be produced together with bioethanol in a biorefinery context. Special attention is given to the opportunities for making a sustainable transition from bioethanol 1G to advanced bioethanol.
Collapse
|
7
|
Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnol Adv 2020; 42:107579. [PMID: 32593775 DOI: 10.1016/j.biotechadv.2020.107579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
Abstract
Recent advances in amylolytic strain engineering for starch-to-ethanol conversion have provided a platform for the development of raw starch consolidated bioprocessing (CBP) technologies. Several proof-of-concept studies identified improved enzyme combinations, alternative feedstocks and novel host strains for evaluation and application under fermentation conditions. However, further research efforts are required before this technology can be scaled up to an industrial level. In this review, different CBP approaches are defined and discussed, also highlighting the role of auxiliary enzymes for a supplemented CBP process. Various achievements in the development of amylolytic Saccharomyces cerevisiae strains for CBP of raw starch and the remaining challenges that need to be tackled/pursued to bring yeast raw starch CBP to industrial realization, are described. Looking towards the future, it provides potential solutions to develop more cost-effective processes that include cheaper substrates, integration of the 1G and 2G economies and implementing a biorefinery concept where high-value products are also derived from starchy substrates.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
8
|
Pratto B, Dos Santos-Rocha MSR, Longati AA, de Sousa Júnior R, Cruz AJG. Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. BIORESOURCE TECHNOLOGY 2020; 297:122494. [PMID: 31813817 DOI: 10.1016/j.biortech.2019.122494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The present work aims to determine a suitable yield-productivity balance in bioethanol production from hydrothermally pretreated sugarcane straw via pre-saccharification (PS) and simultaneous saccharification and fermentation (SSF). PS experiments were carried out evaluating effects of enzymatic dosage, biomass loading, and PS time. The performance of the whole process (PSSSF) was evaluated based on overall ethanol yield and productivity considering a simultaneous optimization (desirability function) of both variables. The multi-criteria optimization enabled to reach 5.7% w/w ethanol concentration yielding 290 L of ethanol per ton of pretreated sugarcane straw within 45 h of total processing time. Furthermore, a techno-economic analysis was performed under optimized conditions (14.5 FPU/gcellulose, 19.3% w/v biomass loading and 33 h PS time). This process was integrated into a first-generation plant. Although the economic evaluation exhibited a negative performance, a sensitivity analysis indicated that a decrease of 23.3% in operational expenditure would be enough to achieve feasibility.
Collapse
Affiliation(s)
- Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| | | | - Andreza Aparecida Longati
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil; Fundação Educacional de Ituverava, Rua Cel. Flauzino Barbosa Sandoval, 1259, CEP: 14500-000 Ituverava, SP, Brazil
| | - Ruy de Sousa Júnior
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil
| | - Antonio José Gonçalves Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:294. [PMID: 31890022 PMCID: PMC6927169 DOI: 10.1186/s13068-019-1634-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define "the best pretreatment" method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation.
Collapse
Affiliation(s)
- Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Yu J, Xu Z, Liu L, Chen S, Wang S, Jin M. Process integration for ethanol production from corn and corn stover as mixed substrates. BIORESOURCE TECHNOLOGY 2019; 279:10-16. [PMID: 30710815 DOI: 10.1016/j.biortech.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
This work investigated all possible process integration strategies for ethanol production from corn and dilute acid pretreated corn stover (CS) as mixed substrates. Three corn to pretreated CS ratios (20%:10%, 10%:20% and 5%:25%) were examined. When the ratio of corn to pretreated CS was 20%:10%, the process integration strategy that mixed corn with CS hydrolysate for liquefaction followed by SSF resulted in the highest ethanol titer of 99.3 g/L. Mixing liquefied corn with pretreated CS for hydrolysis/saccharification followed by fermentation was the best strategy for the other two ratios. The strategy of mixing liquefied corn with pretreated CS for 6 h hydrolysis followed by fermentation showed the highest productivity for all the tested ratios.
Collapse
Affiliation(s)
- Jianming Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Lei Liu
- Jiangsu Huating Biotechnology Co., Ltd., 228 Xingang South Road, Xinyi Economic Development District, Xinyi, Jiangsu 221400, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shengwei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
11
|
An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF). Catalysts 2019. [DOI: 10.3390/catal9030225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many approaches have been considered aimed at ethanol production from the hemicellulosic fraction of biomass. However, the industrial implementation of this process has been hindered by some bottlenecks, one of the most important being the ease of contamination of the bioreactor by bacteria that metabolize xylose. This work focuses on overcoming this problem through the fermentation of xylulose (the xylose isomer) by native Saccharomyces cerevisiae using xylo-oligomers as substrate. A new concept of biocatalyst is proposed, containing xylanases and xylose isomerase (XI) covalently immobilized on chitosan, and co-encapsulated with industrial baker’s yeast in Ca-alginate gel spherical particles. Xylo-oligomers are hydrolyzed, xylose is isomerized, and finally xylulose is fermented to ethanol, all taking place simultaneously, in a process called simultaneous hydrolysis, isomerization, and fermentation (SHIF). Among several tested xylanases, Multifect CX XL A03139 was selected to compose the biocatalyst bead. Influences of pH, Ca2+, and Mg2+ concentrations on the isomerization step were assessed. Experiments of SHIF using birchwood xylan resulted in an ethanol yield of 0.39 g/g, (76% of the theoretical), selectivity of 3.12 gethanol/gxylitol, and ethanol productivity of 0.26 g/L/h.
Collapse
|
12
|
Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:127. [PMID: 29755586 PMCID: PMC5934847 DOI: 10.1186/s13068-018-1130-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Collapse
Affiliation(s)
- Thapelo Mokomele
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Department of Engineering Technology, Biotechnology Program, School of Technology, University of Houston, 4800 Calhoun, Road, Houston, TX 77004 USA
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| |
Collapse
|
13
|
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:175-215. [PMID: 27913828 DOI: 10.1007/10_2016_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.
Collapse
Affiliation(s)
- Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Nair RB, Kalif M, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. BIORESOURCE TECHNOLOGY 2017; 245:145-151. [PMID: 28892684 DOI: 10.1016/j.biortech.2017.08.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol.
Collapse
Affiliation(s)
- Ramkumar B Nair
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mahdi Kalif
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | | | |
Collapse
|
15
|
Cadete R, Melo-Cheab M, Dussán K, Rodrigues R, da Silva S, Gomes F, Rosa C. Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate byScheffersomyces parashehatae,Scheffersomyces illinoinensisandSpathaspora arborariaeisolated from Brazilian ecosystems. J Appl Microbiol 2017; 123:1203-1213. [DOI: 10.1111/jam.13559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- R.M. Cadete
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - M.A. Melo-Cheab
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - K.J. Dussán
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
- Departamento de Bioquímica e Química Tecnológica; Instituto de Química; Universidade Estadual Paulista; Araraquara SP Brazil
| | - R.C.L.B. Rodrigues
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - S.S. da Silva
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - F.C.O. Gomes
- Departamento de Química; Centro Federal de Educação Tecnológica de Minas Gerais; Belo Horizonte MG Brazil
| | - C.A. Rosa
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
16
|
Junqueira TL, Chagas MF, Gouveia VLR, Rezende MCAF, Watanabe MDB, Jesus CDF, Cavalett O, Milanez AY, Bonomi A. Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:50. [PMID: 28293288 PMCID: PMC5348788 DOI: 10.1186/s13068-017-0722-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/02/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). RESULTS Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. CONCLUSIONS This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.
Collapse
Affiliation(s)
- Tassia L. Junqueira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Mateus F. Chagas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
- Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Vera L. R. Gouveia
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Mylene C. A. F. Rezende
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Marcos D. B. Watanabe
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Charles D. F. Jesus
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Otavio Cavalett
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
| | - Artur Y. Milanez
- Departamento de Biocombustíveis, Banco Nacional de Desenvolvimento Econômico e Social (BNDES), Rio de Janeiro, RJ Brazil
| | - Antonio Bonomi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, SP CEP 13083-970 Brazil
- Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| |
Collapse
|
17
|
Joelsson E, Dienes D, Kovacs K, Galbe M, Wallberg O. Combined production of biogas and ethanol at high solids loading from wheat straw impregnated with acetic acid: experimental study and techno-economic evaluation. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40508-016-0058-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Bechara R, Gomez A, Saint-Antonin V, Schweitzer JM, Maréchal F. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration. BIORESOURCE TECHNOLOGY 2016; 214:441-449. [PMID: 27160954 DOI: 10.1016/j.biortech.2016.04.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate.
Collapse
Affiliation(s)
- Rami Bechara
- Process Modeling and Design, IFPEN, Insitut Français du Pétrole et des Energies Nouvelles, Rond Point de l'Echangeur de Solaize, BP3, 69360 Solaize, France.
| | - Adrien Gomez
- Process Modeling and Design, IFPEN, Insitut Français du Pétrole et des Energies Nouvelles, Rond Point de l'Echangeur de Solaize, BP3, 69360 Solaize, France.
| | - Valérie Saint-Antonin
- Economics and Information Watch and Management, IFPEN, 1-4 Avenue du Bois Préau, 92852 Rueil-Malmaison, France.
| | - Jean-Marc Schweitzer
- Process Modeling and Design, IFPEN, Insitut Français du Pétrole et des Energies Nouvelles, Rond Point de l'Echangeur de Solaize, BP3, 69360 Solaize, France.
| | - François Maréchal
- Industrial Process and Energy Systems Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| |
Collapse
|
19
|
Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle. Appl Environ Microbiol 2016; 81:1406-16. [PMID: 25527535 DOI: 10.1128/aem.03521-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782).While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a -oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled deltaffabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli.
Collapse
|
20
|
Tang Y, Dou X, Jiang J, Lei F, Liu Z. Yield-determining components in high-solid integrated first and second generation bioethanol production from cassava residues, furfual residues and corn. RSC Adv 2016. [DOI: 10.1039/c6ra08036g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein, cellulose, and starch were yield-determining components in high-solids integration process for ethanol production from cassava residuals, furfural residuals and corn.
Collapse
Affiliation(s)
- Yong Tang
- Department of Chemistry and Chemical Engineering
- Beijing Forestry University
- Beijing
- China
- Department of Chemical and Biological Engineering
| | - Xiaoli Dou
- Forest Products Biotechnology
- Department of Wood Science
- The University of British Columbia
- Vancouver
- Canada
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering
- Beijing Forestry University
- Beijing
- China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning 530006
- China
| | - Zuguang Liu
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning 530006
- China
| |
Collapse
|
21
|
Bertrand E, Vandenberghe LPS, Soccol CR, Sigoillot JC, Faulds C. First Generation Bioethanol. GREEN FUELS TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-30205-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Joelsson E, Erdei B, Galbe M, Wallberg O. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:1. [PMID: 26816530 PMCID: PMC4700589 DOI: 10.1186/s13068-015-0423-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Integration of first- and second-generation ethanol production can facilitate the introduction of second-generation lignocellulosic ethanol production. Consolidation of the second-generation with the first-generation process can potentially reduce the downstream processing cost for the second-generation process as well as providing the first-generation process with energy. This study presents novel experimental results from integrated first- and second-generation ethanol production from grain and wheat straw in a process development unit. The results were used in techno-economic evaluations to investigate the feasibility of the plant, in which the main co-products were distiller's dried grains with solubles and biogas. RESULTS An overall glucose to ethanol yield, of 81 % of the theoretical, based on glucose available in the raw material, was achieved in the experiments. A positive net present value was found for all the base case scenarios and the minimal ethanol selling price varied between 0.45 and 0.53 EUR/L ethanol. The revenue increased with combined xylose and glucose fermentation and biogas upgrading to vehicle fuel quality. A decrease in the biogas yield from 80 to 60 % also largely affects the net present value. The energy efficiency for the energy content in products available for sale compared with the incoming energy content varied from 74 to 80 %. CONCLUSIONS One of the two main configurations can be chosen when designing an integrated first- and second-generation ethanol production plant from grain and straw: that producing biogas or that producing distiller's dried grains with solubles from the xylose sugars. The choice depends mainly on the local market and prices for distiller's dried grains with solubles and biogas, since the prices for both co-products have fluctuated a great deal in recent years. In the current study, however, distiller's dried grains with solubles were found to be a more promising co-product than biogas, if the biogas was not upgraded to vehicle fuel quality. It was also concluded that additional experimental data from biogas production using first- and second-generation substrates are required to obtain improved economic evaluations.
Collapse
Affiliation(s)
- Elisabeth Joelsson
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Borbála Erdei
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
23
|
Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels. Front Bioeng Biotechnol 2015; 3:182. [PMID: 26636072 PMCID: PMC4646955 DOI: 10.3389/fbioe.2015.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels.
Collapse
Affiliation(s)
- Nam V. Hoang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Blake A. Simmons
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
24
|
Nehring RB, Gu F, Lin HY, Gibson JL, Blythe MJ, Wilson R, Bravo Núñez MA, Hastings PJ, Louis EJ, Frisch RL, Hu JC, Rosenberg SM. An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in Escherichia coli. Nucleic Acids Res 2015; 44:e41. [PMID: 26578563 PMCID: PMC4797258 DOI: 10.1093/nar/gkv1131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 01/26/2023] Open
Abstract
With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter—ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing (‘forward genomics’) demonstrates a strategy that could similarly enable rapid screens in many other microbes.
Collapse
Affiliation(s)
- Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Franklin Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Janet L Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin J Blythe
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ray Wilson
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - María Angélica Bravo Núñez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA Undergraduate Program in Genomic Sciences, National Autonomous University of Mexico, 62210 Cuernavaca, Mexico
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward J Louis
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James C Hu
- Department of Biochemistry and Biophysics, Texas A&M University and Texas Agrilife Research, College Station, TX 77843, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 2015; 33:32-8. [DOI: 10.1016/j.copbio.2014.10.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 11/23/2022]
|
26
|
Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: Effects of operational variables and cultivation method. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Pereira SC, Maehara L, Machado CMM, Farinas CS. 2G ethanol from the whole sugarcane lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:44. [PMID: 25774217 PMCID: PMC4359543 DOI: 10.1186/s13068-015-0224-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/09/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. RESULTS The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. CONCLUSIONS Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.
Collapse
Affiliation(s)
| | - Larissa Maehara
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| | | | - Cristiane Sanchez Farinas
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| |
Collapse
|