1
|
Karageorgos FF, Neiros S, Karakasi KE, Vasileiadou S, Katsanos G, Antoniadis N, Tsoulfas G. Artificial kidney: Challenges and opportunities. World J Transplant 2024; 14:89025. [PMID: 38576754 PMCID: PMC10989479 DOI: 10.5500/wjt.v14.i1.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/15/2024] Open
Abstract
This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys. The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased, as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology. In this review, modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented. But what are the problems faced by each technology and to what extent is the effort enough to date?
Collapse
Affiliation(s)
- Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stavros Neiros
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Konstantina-Eleni Karakasi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stella Vasileiadou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Habib R, Fahim S, Wahid M, Ainuddin J. Optimisation of a Method for the Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Toward Renal Epithelial-like Cells. Altern Lab Anim 2023; 51:363-375. [PMID: 37831588 DOI: 10.1177/02611929231207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Shumaila Fahim
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynaecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
3
|
Wang Q, Lu J, Fan K, Xu Y, Xiong Y, Sun Z, Zhai M, Zhang Z, Zhang S, Song Y, Luo J, You M, Guo M, Zhang X. High-throughput "read-on-ski" automated imaging and label-free detection system for toxicity screening of compounds using personalised human kidney organoids. J Zhejiang Univ Sci B 2022; 23:564-577. [PMID: 35794686 DOI: 10.1631/jzus.b2100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organoid models are used to study kidney physiology, such as the assessment of nephrotoxicity and underlying disease processes. Personalized human pluripotent stem cell-derived kidney organoids are ideal models for compound toxicity studies, but there is a need to accelerate basic and translational research in the field. Here, we developed an automated continuous imaging setup with the "read-on-ski" law of control to maximize temporal resolution with minimum culture plate vibration. High-accuracy performance was achieved: organoid screening and imaging were performed at a spatial resolution of 1.1 μm for the entire multi-well plate under 3 min. We used the in-house developed multi-well spinning device and cisplatin-induced nephrotoxicity model to evaluate the toxicity in kidney organoids using this system. The acquired images were processed via machine learning-based classification and segmentation algorithms, and the toxicity in kidney organoids was determined with 95% accuracy. The results obtained by the automated "read-on-ski" imaging device, combined with label-free and non-invasive algorithms for detection, were verified using conventional biological procedures. Taking advantage of the close-to-in vivo-kidney organoid model, this new development opens the door for further application of scaled-up screening using organoids in basic research and drug discovery.
Collapse
Affiliation(s)
- Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ke Fan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Man Zhai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianzhong Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. ,
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
4
|
Sánchez-Romero N, Martínez-Gimeno L, Caetano-Pinto P, Saez B, Sánchez-Zalabardo JM, Masereeuw R, Giménez I. A simple method for the isolation and detailed characterization of primary human proximal tubule cells for renal replacement therapy. Int J Artif Organs 2019; 43:45-57. [DOI: 10.1177/0391398819866458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main physiological functions of renal proximal tubule cells in vivo are reabsorption of essential nutrients from the glomerular filtrate and secretion of waste products and xenobiotics into urine. Currently, there are several established cell lines of human origin available as in vitro models of proximal tubule. However, these cells appeared to be limited in their biological relevance, because essential characteristics of the original tissue are lost once the cells are cultured. As a consequence of these limitations, primary human proximal tubule cells constitute a suitable and a biologically more relevant in vitro model to study this specific segment of the nephron and therefore, these cells can play an important role in renal regenerative medicine applications. Here, we describe a protocol to isolate proximal tubule cells from human nephrectomies. We explain the steps performed for an in-depth characterization of the cells, including the study of markers from others segments of the nephron, with the goal to determine the purity of the culture and the stability of proteins, enzymes, and transporters along time. The human proximal tubule cells isolated and used throughout this study showed many proximal tubule characteristics, including monolayer organization, cell polarization with the expression of tight junctions and primary cilia, expression of proximal tubule–specific proteins, such as megalin and sodium/glucose cotransporter 2, among others. The cells also expressed enzymatic activity for dipeptidyl peptidase IV, as well as for gamma glutamyl transferase 1, and expressed transporter activity for organic anion transporter 1, P-glycoprotein, multidrug resistance proteins, and breast cancer resistance protein. In conclusion, characterization of our cells confirmed presence of putative proximal tubule markers and the functional expression of multiple endogenous organic ion transporters mimicking renal reabsorption and excretion. These findings can constitute a valuable tool in the development of bioartificial kidney devices.
Collapse
Affiliation(s)
- Natalia Sánchez-Romero
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Laura Martínez-Gimeno
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Pedro Caetano-Pinto
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Berta Saez
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Universidad San Jorge, Zaragoza, Spain
| | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ignacio Giménez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
6
|
Pavathuparambil Abdul Manaph N, Al-Hawaas M, Bobrovskaya L, Coates PT, Zhou XF. Urine-derived cells for human cell therapy. Stem Cell Res Ther 2018; 9:189. [PMID: 29996911 PMCID: PMC6042455 DOI: 10.1186/s13287-018-0932-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Desirable cells for human cell therapy would be ones that can be generated by simple isolation and culture techniques using a donor sample obtained by non-invasive methods. To date, the different donor-specific cells that can be isolated from blood, skin, and hair require invasive methods for sample isolation and incorporate complex and costly reagents to culture. These cells also take considerable time for their in-vitro isolation and expansion. Previous studies suggest that donor-derived cells, namely urine stem cells and renal cells, may be isolated from human urine samples using a cost-effective and simple method of isolation, incorporating not such complex reagents. Moreover, the isolated cells, particularly urine stem cells, are superior to conventional stem cell sources in terms of favourable gene profile and inherent multipotent potential. Transdifferentiation or differentiation of human urine-derived cells can generate desirable cells for regenerative therapy. In this review, we intended to discuss the characteristics and therapeutic applications of urine-derived cells for human cell therapy. Conclusively, with detailed study and optimisation, urine-derived cells have a prospective future to generate functional lineage-specific cells for patients from a clinical translation point of view.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, 5000 South Australia
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, 5000 South Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, 5000 South Australia
| | - Mohammed Al-Hawaas
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, 5000 South Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, 5000 South Australia
| | - Patrick T. Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, 5000 South Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, 5000 South Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, 5000 South Australia
| |
Collapse
|
7
|
Stoltz JF, Zhang L, Ye JS, De Isla N. Organ reconstruction: Dream or reality for the future. Biomed Mater Eng 2017; 28:S121-S127. [PMID: 28372287 DOI: 10.3233/bme-171633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relevance of research on reconstructed organs is justified by the lack of organs available for transplant and the growing needs for the ageing population. The development of a reconstructed organ involves two parallel complementary steps: de-cellularization of the organ with the need to maintain the structural integrity of the extracellular matrix and vascular network and re-cellularization of the scaffold with stem cells or resident cells.Whole organ engineering for liver, heart, lung or kidneys, is particularly difficult because of the structural complexity of organs and heterogeneity of cells. Rodent, porcine and rhesus monkey organs have been de-cellularized to obtain a scaffold with preserved extracellular matrix and vascular network. As concern the cells for re-cellularization, embryonic, foetal, adult, progenitor stem cells and also iPS have been proposed.Heart construction could be an alternative option for the treatment of cardiac insufficiency. It is based on the use of an extra-cellular matrix coming from an animal's heart and seeded with cells likely to reconstruct a normal cardiac function. Though de-cellularization techniques now seem controlled, the issues posed by the selection of cells capable of generating the various components of cardiac tissue are not settled yet. In addition, the recolonisation of the matrix does not only depend on the phenotype of cells that are used, but it is also impacted by the nature of biochemical signals emitted.Recent researches have shown that it is possible to use decellularized whole liver treated by detergents as scaffold, which keeps the entire network of blood vessels and the integrated extracellular matrix (ECM). Beside of decellularized whole organ scaffold seeding cells selected to repopulate a decellularized liver scaffold are critical for the function of the bioengineered liver. At present, potential cell sources are hepatocyte, and mesenchymal stem cells.Pulmonary regeneration using engineering approaches is complex. In fact, several types of local progenitor cells that contribute to cell repair have been described at different levels of the respiratory tract. Moving towards the alveoles, one finds bronchioalveolar stem cells as well as epithelial cells and pneumocytes. A promising option to increase the donor organ pool is to use allogeneic or xenogeneic decellularized lungs as a scaffold to engineer functional lung tissue ex vivo.The kidney is certainly one of the most difficult organs to reconstruct due to its complex nature and the heterogeneous nature of the cells. There is relatively little research on auto-construction, and experiments have been performed on rats, pigs and monkeys.Nevertheless, before these therapeutic approaches can be applied in clinical practice, many researches are necessary to understand and in particular the behaviour of cells on the decellularized organs as well as the mechanisms of their interaction with the microenvironment. Current knowledges allow optimism for the future but definitive answers can only be given after long term animal studies and controlled clinical studies.
Collapse
Affiliation(s)
- J-F Stoltz
- CNRS, UMR 7365, Biopole, Faculté de Médecine, 54500 Vandoeuvre-Lès-Nancy, France.,CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UL-CHU 3209), 54511 Vandoeuvre-Lès-Nancy, France
| | - L Zhang
- CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,Centre de Recherche, Calmette Hospital, Kunming, P.R. China
| | - J S Ye
- CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,Centre de Recherche, Calmette Hospital, Kunming, P.R. China
| | - N De Isla
- CNRS, UMR 7365, Biopole, Faculté de Médecine, 54500 Vandoeuvre-Lès-Nancy, France.,CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
8
|
Disposition and clinical implications of protein-bound uremic toxins. Clin Sci (Lond) 2017; 131:1631-1647. [DOI: 10.1042/cs20160191] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
In patients with chronic kidney disease (CKD), adequate renal clearance is compromised, resulting in the accumulation of a plethora of uremic solutes. These uremic retention solutes, also named uremic toxins, are a heterogeneous group of organic compounds with intrinsic biological activities, many of which are too large to be filtered and/or are protein bound. The renal excretion of protein-bound toxins depends largely on active tubular secretion, which shifts the binding and allows for active secretion of the free fraction. To facilitate this process, renal proximal tubule cells are equipped with a range of transporters that co-operate in basolateral uptake and luminal excretion. Many of these transporters have been characterized as mediators of drug disposition, but have recently been recognized for their importance in the proximal renal tubular transport of uremic toxins as well. This also indicates that during uremia, drug disposition may be severely affected as a result of drug–uremic toxin interaction. In addition, CKD patients receive various drugs to treat their complications potentially resulting in drug–drug interactions (DDIs), also for drugs that are non-renally excreted. This review discusses the current knowledge on formation, disposition and removal of protein-bound uremic toxins. Furthermore, implications associated with drug treatment in kidney failure, as well as innovative renal replacement therapies targetting the protein-bound uremic toxins are being discussed. It will become clear that the complex problems associated with uremia warrant a transdisciplinary approach that unites research experts in the area of fundamental biomedical research with their colleagues in clinical nephrology.
Collapse
|
9
|
Abstract
Purpose of Review Historically, there have been many advances in the ways in which we treat kidney diseases. In particular, hemodialysis has set the standard for treatment since the early 1960s and continues today as the most common form of treatment for acute, chronic, and end-stage conditions. However, the rising global prevalence of kidney diseases and our limited understanding of their etiologies have placed significant burdens on current clinical management regimens. This has resulted in a desperate need to improve the ways in which we treat the underlying and ensuing causes of kidney diseases for those who are unable to receive transplants. Recent Findings One way of possibly addressing these issues is through the use of improved bioartificial kidneys. Bioartificial kidneys provide an extension to conventional artificial kidneys and dialysis systems, by incorporating aspects of living cellular and tissue function, in an attempt to better mimic normal kidneys. Recent advancements in genomic, cellular, and tissue engineering technologies are facilitating the improved design of these systems. Summary In this review, we outline various research efforts that have focused on the development of regenerated organs, implantable constructs, and whole bioengineered kidneys, as well as the transitions from conventional dialysis to these novel alternatives. As a result, we envision that these pioneering efforts can one day produce bioartificial renal technologies that can either perform or reintroduce essential function, and thus provide practical options to treat and potentially prevent kidney diseases.
Collapse
Affiliation(s)
- Peter R Corridon
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.,Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
10
|
Stoltz JF, Bensoussan D, De Isla N, Zhang L, Han Z, Magdalou J, Huselstein C, Ye J, Leballe B, Decot V, Reppel L. Stem cells and vascular regenerative medicine: A mini review. Clin Hemorheol Microcirc 2017; 64:613-633. [DOI: 10.3233/ch-168036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J.-F. Stoltz
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - D. Bensoussan
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - N. De Isla
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - L. Zhang
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | - Z. Han
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recvherche sur les cellules souches, Beijing et Tianjin, China
| | - J. Magdalou
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - C. Huselstein
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - J.S. Ye
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | | | - V. Decot
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - L. Reppel
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
11
|
Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2016; 35:150-167. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 02/09/2023]
Abstract
The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.
Collapse
Affiliation(s)
- Jacqueline Kai Chin Chuah
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
12
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
13
|
Nowacki M, Nazarewski Ł, Kloskowski T, Tyloch D, Pokrywczyńska M, Pietkun K, Jundziłł A, Tyloch J, Habib SL, Drewa T. Novel surgical techniques, regenerative medicine, tissue engineering and innovative immunosuppression in kidney transplantation. Arch Med Sci 2016; 12:1158-1173. [PMID: 27695507 PMCID: PMC5016594 DOI: 10.5114/aoms.2016.61919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/08/2015] [Indexed: 01/09/2023] Open
Abstract
On the 60th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression.
Collapse
Affiliation(s)
- Maciej Nowacki
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Chair of Surgical Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Dominik Tyloch
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Pietkun
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Arkadiusz Jundziłł
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Janusz Tyloch
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Samy L. Habib
- Department of Geriatrics, Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Department of General and Oncological Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
14
|
Du C, Narayanan K, Leong MF, Ibrahim MS, Chua YP, Khoo VMH, Wan ACA. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater 2016; 5:2080-91. [PMID: 27294565 DOI: 10.1002/adhm.201600120] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/20/2016] [Indexed: 11/11/2022]
Abstract
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly, the present work is focused on generating the functional unit of the kidney, the glomerulus. In the repopulated organ, the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice, glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant, expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
Collapse
Affiliation(s)
- Chan Du
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | | | - Ying Ping Chua
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Vanessa Mei Hui Khoo
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Andrew C. A. Wan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
15
|
Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol 2016; 790:28-35. [PMID: 27395800 DOI: 10.1016/j.ejphar.2016.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
Abstract
The limited removal of metabolic waste products in dialyzed kidney patients leads to high morbidity and mortality. One powerful solution for a more complete removal of those metabolites might be offered by a bioartificial kidney device (BAK), which contains a hybrid "living membrane" with functional proximal tubule epithelial cells (PTEC). These cells are supported by an artificial functionalized hollow fiber membrane (HFM) and are able to actively remove the waste products. In our earlier studies, conditionally immortalized human PTEC (ciPTEC) showed to express functional organic cationic transporter 2 (OCT2) when seeded on small size flat or hollow fiber polyethersulfone (PES) membranes. Here, an upscaled "living membrane" is presented. We developed and assessed the functionality of modules containing three commercially available MicroPES HFM supporting ciPTEC. The HFM were optimally coated with L-Dopa and collagen IV to support a uniform and tight monolayer formation of matured ciPTEC under static culturing conditions. Both abundant expression of zonula occludens-1 (ZO-1) protein and limited diffusion of FITC-inulin confirm a clear barrier function of the monolayer. Furthermore, the uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+), a fluorescent OCT2 substrate, was studied in absence and presence of known OCT inhibitors, such as cimetidine and a cationic uremic solutes mixture. The ASP+ uptake by the living upscaled membrane was decreased by 60% in the presence of either inhibitor, proving the active function of OCT2. In conclusion, this study presents a successful upscaling of a living membrane with active organic cation transport as a support for BAK device.
Collapse
Affiliation(s)
- Natalia Vladimirovna Chevtchik
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Michele Fedecostante
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Milos Mihajlovic
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marieke Rüth
- eXcorLab GmbH, Industrie Center Obernburg, Obernburg, Germany
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
16
|
Bioengineered kidney tubules efficiently excrete uremic toxins. Sci Rep 2016; 6:26715. [PMID: 27242131 PMCID: PMC4886219 DOI: 10.1038/srep26715] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed bioengineered renal tubule capable of active uremic toxin secretion through the concerted action of essential renal transporters, viz. organic anion transporter-1 (OAT1), breast cancer resistance protein (BCRP) and multidrug resistance protein-4 (MRP4). Three-dimensional cell monolayer formation of human conditionally immortalized proximal tubule epithelial cells (ciPTEC) on biofunctionalized hollow fibers with maintained barrier function was demonstrated. Using a tailor made flow system, the secretory clearance of human serum albumin-bound uremic toxins, indoxyl sulfate and kynurenic acid, as well as albumin reabsorption across the renal tubule was confirmed. These functional bioengineered renal tubules are promising entities in renal replacement therapies and regenerative medicine, as well as in drug development programs.
Collapse
|
17
|
Shen C, Zhang G, Wang Q, Meng Q. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19789-19797. [PMID: 26280545 DOI: 10.1021/acsami.5b05809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation.
Collapse
Affiliation(s)
- Chong Shen
- Department of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| | - Guoliang Zhang
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology , Hangzhou 310023, China
| | - Qichen Wang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Qin Meng
- Department of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
18
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
19
|
Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, Rogers J, Stratta RJ, Manzia TM, Orlando G. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 2015; 15:547-58. [PMID: 25640286 DOI: 10.1517/14712598.2015.993376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dialysis and renal transplantation are the only two therapeutic options offered to patients affected by end-stage kidney disease; however, neither treatment can be considered definitive. In fact, dialysis is able to replace only the filtration function of the kidney without substituting its endocrine and metabolic roles, and dramatically impacts on patient's quality of life. On the other hand, kidney transplantation is severely limited by the shortage of transplantable organs, the need for immunosuppressive therapies and a narrow half-life. Regenerative medicine approaches are promising tools aiming to improve this condition. AREAS COVERED Cell therapies, bioartificial kidney, organ bioengineering, 3D printer and kidney-on-chip represent the most appealing areas of research for the treatment of end-stage kidney failure. The scope of this review is to summarize the state of the art, limits and directions of each branch. EXPERT OPINION In the future, these emerging technologies could provide definitive, curative and theoretically infinite options for the treatment of end-stage kidney disease. Progress in stem cells-based therapies, decellularization techniques and the more recent scientific know-how for the use of the 3D printer and kidney-on-chip could lead to a perfect cellular-based therapy, the futuristic creation of a bioengineered kidney in the lab or to a valid bioartificial alternative.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep 2014; 15:379. [PMID: 24375058 DOI: 10.1007/s11934-013-0379-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of chronic kidney disease continues to outpace the development of effective treatment strategies. For patients with advanced disease, renal replacement therapies approximate the filtration functions of the kidney at considerable cost and inconvenience, while failing to restore the resorptive and endocrine functions. Allogeneic transplantation remains the only restorative treatment, but donor shortage, surgical morbidity and the need for lifelong immunosuppression significantly limit clinical application. Emerging technologies in the fields of regenerative medicine and tissue engineering strive to address these limitations. We review recent advances in cell-based therapies, primordial allografts, bio-artificial organs and whole-organ bioengineering as they apply to renal regeneration. Collaborative efforts across these fields aim to produce a bioengineered kidney capable of restoring renal function in patients with end-stage disease.
Collapse
|
21
|
Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv 2014; 32:1317-1327. [PMID: 25135479 DOI: 10.1016/j.biotechadv.2014.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/05/2014] [Accepted: 08/09/2014] [Indexed: 12/14/2022]
Abstract
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.
Collapse
|
22
|
Nowacki M, Kloskowski T, Pokrywczyńska M, Nazarewski Ł, Jundziłł A, Pietkun K, Tyloch D, Rasmus M, Warda K, Habib SL, Drewa T. Is regenerative medicine a new hope for kidney replacement? J Artif Organs 2014; 17:123-34. [DOI: 10.1007/s10047-014-0767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
|
23
|
Hoppensack A, Kazanecki CC, Colter D, Gosiewska A, Schanz J, Walles H, Schenke-Layland K. A human in vitro model that mimics the renal proximal tubule. Tissue Eng Part C Methods 2014; 20:599-609. [PMID: 24266327 DOI: 10.1089/ten.tec.2013.0446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human in vitro-manufactured tissue and organ models can serve as powerful enabling tools for the exploration of fundamental questions regarding cell, matrix, and developmental biology in addition to the study of drug delivery dynamics and kinetics. To date, the development of a human model of the renal proximal tubule (PT) has been hindered by the lack of an appropriate cell source and scaffolds that allow epithelial monolayer formation and maintenance. Using extracellular matrices or matrix proteins, an in vivo-mimicking environment can be created that allows epithelial cells to exhibit their typical phenotype and functionality. Here, we describe an in vitro-engineered PT model. We isolated highly proliferative cells from cadaveric human kidneys (human kidney-derived cells [hKDCs]), which express markers that are associated with renal progenitor cells. Seeded on small intestinal submucosa (SIS), hKDCs formed a confluent monolayer and displayed the typical phenotype of PT epithelial cells. PT markers, including N-cadherin, were detected throughout the hKDC culture on the SIS, whereas markers of later tubule segments were weak (E-cadherin) or not (aquaporin-2) expressed. Basement membrane and microvilli formation demonstrated a strong polarization. We conclude that the combination of hKDCs and SIS is a suitable cell-scaffold composite to mimic the human PT in vitro.
Collapse
Affiliation(s)
- Anke Hoppensack
- 1 Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) , Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Takahashi H, Sawada K, Kakuta T, Suga T, Hanai K, Kanai G, Fujimura S, Sanechika N, Terachi T, Fukagawa M, Saito A. Evaluation of bioartificial renal tubule device prepared with human renal proximal tubular epithelial cells cultured in serum-free medium. J Artif Organs 2013; 16:368-75. [DOI: 10.1007/s10047-013-0710-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
25
|
Yong E. Lab-grown kidneys transplanted into rats. Nature 2013. [DOI: 10.1038/nature.2013.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Oo ZY, Kandasamy K, Tasnim F, Zink D. A novel design of bioartificial kidneys with improved cell performance and haemocompatibility. J Cell Mol Med 2013; 17:497-507. [PMID: 23480720 PMCID: PMC3822650 DOI: 10.1111/jcmm.12029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022] Open
Abstract
Treatment with bioartificial kidneys had beneficial effects in animal experiments and improved survival of critically ill patients with acute kidney injury in a Phase II clinical trial. However, a Phase II b clinical trial failed. This and other results suggested various problems with the current design of bioartificial kidneys. We propose a novel design to improve various properties of device, including haemocompatibility and cell performance. An important feature of the novel design is confinement of the blood to the lumina of the hollow fibre membranes. This avoids exposure of the blood to the non-haemocompatible outer surfaces of hollow fibre membranes, which usually occurs in bioartificial kidneys. We use these outer surfaces as substrate for cell growth. Our results show that commercial hollow fibre membranes can be directly applied in the bioreactor when human primary renal proximal tubular cells are grown in this configuration, and no coatings are required for the formation of robust and functional renal epithelia. Furthermore, we demonstrate that the bioreactor unit produces significant amounts of interleukins. This result helps to understand the immunomodulatory effects of bioartificial kidneys, which have been observed previously. The novel bioartificial kidney design outlined here and the results obtained would be expected to improve the safety and performance of bioartificial kidneys and to contribute to a better understanding of their effects.
Collapse
Affiliation(s)
- Zay Yar Oo
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore 138669, Singapore
| | | | | | | |
Collapse
|
27
|
Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int 2013; 83:593-603. [PMID: 23389418 DOI: 10.1038/ki.2012.442] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.
Collapse
|
28
|
Tasnim F, Zink D. Cross talk between primary human renal tubular cells and endothelial cells in cocultures. Am J Physiol Renal Physiol 2012; 302:F1055-62. [DOI: 10.1152/ajprenal.00621.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| |
Collapse
|
29
|
Saito A, Sawada K, Fujimura S, Suzuki H, Hirukawa T, Tatsumi R, Kanai G, Takahashi H, Miyakogawa T, Sanechika N, Fukagawa M, Kakuta T. Evaluation of bioartificial renal tubule device prepared with lifespan-extended human renal proximal tubular epithelial cells. Nephrol Dial Transplant 2012; 27:3091-9. [DOI: 10.1093/ndt/gfr755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Tasnim F, Kandasamy K, Muck JS, bin Ibrahim MS, Ying JY, Zink D. Effects of Bone Morphogenetic Proteins on Primary Human Renal Cells and the Generation of Bone Morphogenetic Protein-7-Expressing Cells for Application in Bioartificial Kidneys. Tissue Eng Part A 2012; 18:262-76. [DOI: 10.1089/ten.tea.2011.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Joscha S. Muck
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| |
Collapse
|
31
|
Ni M, Zimmermann PK, Kandasamy K, Lai W, Li Y, Leong MF, Wan AC, Zink D. The use of a library of industrial materials to determine the nature of substrate-dependent performance of primary adherent human cells. Biomaterials 2012; 33:353-64. [DOI: 10.1016/j.biomaterials.2011.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/23/2011] [Indexed: 12/30/2022]
|
32
|
The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials 2011; 32:8806-15. [PMID: 21872923 DOI: 10.1016/j.biomaterials.2011.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/10/2011] [Indexed: 01/24/2023]
Abstract
Bioartificial kidneys (BAKs) containing human primary renal proximal tubule cells (HPTCs) have been applied in clinical trials. The results were encouraging, but also showed that more research is required. Animal cells or cell lines are not suitable for clinical applications, but have been mainly used in studies on BAK development as large numbers of such cells could be easily obtained. It is difficult to predict HPTC performance based on data obtained with other cell types. To enable more extensive studies on HPTCs, we have developed a bioreactor containing single hollow fiber membranes that requires relatively small amounts of cells. Special hollow fiber membranes with the skin layer on the outer surface and consisting of polyethersulfone/polyvinylpyrrolidone were developed. The results suggested that such hollow fiber membranes were more suitable for the bioreactor unit of BAKs than membranes with an inner skin layer. An HPTC-compatible double coating was applied to the insides of the hollow fiber membranes, which sustained the formation of functional epithelia under bioreactor conditions. Nevertheless, the state of differentiation of the primary human cells remained a critical issue and should be further addressed. The bioreactor system described here will facilitate further studies on the relevant human cell type.
Collapse
|
33
|
Li Y, Zheng Y, Zhang K, Ying JY, Zink D. Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generatedin vitro. Nanotoxicology 2011; 6:121-33. [DOI: 10.3109/17435390.2011.562326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
GAO X, TANAKA Y, SUGII Y, MAWATARI K, KITAMORI T. Basic Structure and Cell Culture Condition of a Bioartificial Renal Tubule on Chip towards a Cell-based Separation Microdevice. ANAL SCI 2011; 27:907-12. [DOI: 10.2116/analsci.27.907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaofang GAO
- Department of Bioengineering, School of Engineering, The University of Tokyo
| | - Yo TANAKA
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
- Quantitative Biology Center, RIKEN Kobe Institute
| | - Yasuhiko SUGII
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Kazuma MAWATARI
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Takehiko KITAMORI
- Department of Bioengineering, School of Engineering, The University of Tokyo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| |
Collapse
|