1
|
Han J, Geng L, Lu C, Zhou J, Li Y, Ming T, Zhang Z, Su X. Analyzing the mechanism by which oyster peptides target IL-2 in melanoma cell apoptosis based on RNA-seq and m6A-seq. Food Funct 2023; 14:2362-2373. [PMID: 36779260 DOI: 10.1039/d2fo03672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Melanoma is a kind of skin cancer with high malignancy and strong proliferation and invasion abilities. Chemotherapy drugs in the clinic have the disadvantages of high price and high toxicity. Peptides are natural active ingredients that have many functions and are safe and effective. Previous studies have shown that oysters are rich in protein and have antitumor effects. In this study, a high-throughput strategy combined with MALDI TOF/TOF-MS and molecular docking was developed to screen peptides with antitumor functions from oyster hydrolysate. Three dominant peptides were predicted to have similar functions to IL-2 via molecular docking. Then, the activity of the peptides was confirmed in B16 cells, and we found that the three peptides increased the apoptosis of B16 cells. Furthermore, via RNA-seq and m6A-seq of B16 cells treated with the peptides, we found that ILADSAPR downregulates the expression of Pcna, Tlr4, and Ncbp2 and upregulates the expression of Bax, Bad, Pak4, Rasa2, Cct6, and Gbp2. ILADSAPR inhibited B16 cell proliferation and promoted cell apoptosis by regulating the expression of these genes. In addition, the result of metabolic pathway analysis also proved this point. This study provides a preliminary reference for antitumor research on oyster peptides.
Collapse
Affiliation(s)
- Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Lingxin Geng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Bozzi V, Panza E, Barozzi S, Gruppi C, Seri M, Balduini C, Pecci A. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2017; 106:693-704. [DOI: 10.1160/th11-02-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023]
Abstract
SummaryMYH9-related disease (MYH9-RD) is an autosomal-dominant thrombocytopenia caused by mutations in the gene for the heavy chain of nonmuscle myosin-IIA (NMMHC-IIA). Recent in vitro studies led to the hypothesis that thrombocytopenia of MYH9-RD derives from an ectopic platelet release by megakaryocytes in the osteoblastic areas of bone marrow (BM), which are enriched in type I collagen, rather than in vascular spaces. SDF-1-driven migration of megakaryocytes within BM to reach the vascular spaces is a key mechanism for platelet biogenesis. Since myosin-IIA is implicated in polarised migration of different cell types, we hypothesised that MYH9 mutations could interfere with this mechanism. We therefore investigated the SDF-1-driven migration of a megakaryoblastic cell line, Dami cells, on type I collagen or fibrinogen by a modified transwell assay. Inhibition of myosin-IIA ATPase activity suppressed the SDF-1-driven migration of Dami cells, while over-expression of NMMHC-IIA increased the efficiency of chemotaxis, indicat- ing a role for NMMHC-IIA in this mechanism. Transfection of cells with three MYH9 mutations frequently responsible for MYH9-RD (p.R702C, p.D1424H, or p.R1933X) resulted in a defective SDF-1-driven migration with respect to the wild-type counterpart and in increased cell spreading onto collagen. Analysis of differential localisation of wild-type and mutant proteins suggested that mutant NMMHC-IIAs had an impaired cytoplasmic re-organisation in functional cytoskeletal structures after cell adhesion to collagen. These findings support the hypothesis that a defect of SDF-1-driven migration of megakaryocytes induced by MYH9 mutations contributes to ectopic platelet release in the BM osteoblastic areas, resulting in ineffective platelet production.
Collapse
|
3
|
The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630. [PMID: 23166733 PMCID: PMC3499415 DOI: 10.1371/journal.pone.0049630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
Collapse
|