1
|
Parisian AD, Barratt SA, Hodges-Gallagher L, Ortega FE, Peña G, Sapugay J, Robello B, Sun R, Kulp D, Palanisamy GS, Myles DC, Kushner PJ, Harmon CL. Palazestrant (OP-1250), A Complete Estrogen Receptor Antagonist, Inhibits Wild-type and Mutant ER-positive Breast Cancer Models as Monotherapy and in Combination. Mol Cancer Ther 2024; 23:285-300. [PMID: 38102750 PMCID: PMC10911704 DOI: 10.1158/1535-7163.mct-23-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Sun
- Olema Pharmaceuticals, San Francisco, California
| | - David Kulp
- Olema Pharmaceuticals, San Francisco, California
| | | | | | | | | |
Collapse
|
2
|
Gingery A, Iwaniec UT, Subramaniam M, Turner RT, Pitel KS, McGovern RM, Reid JM, Marler RJ, Ingle JN, Goetz MP, Hawse JR. Skeletal and Uterotrophic Effects of Endoxifen in Female Rats. Endocrinology 2017; 158:3354-3368. [PMID: 28977607 PMCID: PMC5659691 DOI: 10.1210/en.2016-1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Endoxifen, the primary active metabolite of tamoxifen, is currently being investigated as a novel endocrine therapy for the treatment of breast cancer. Tamoxifen is a selective estrogen receptor modulator that elicits potent anti-breast cancer effects. However, long-term use of tamoxifen also induces bone loss in premenopausal women and is associated with an increased risk of endometrial cancer in postmenopausal women. For these reasons, we have used a rat model system to comprehensively characterize the impact of endoxifen on the skeleton and uterus. Our results demonstrate that endoxifen elicits beneficial effects on bone in ovary-intact rats and protects against bone loss following ovariectomy. Endoxifen is also shown to reduce bone turnover in both ovary-intact and ovariectomized rats at the cellular and biochemical levels. With regard to the uterus, endoxifen decreased uterine weight but maintained luminal epithelial cell height in ovariectomized animals. Within luminal epithelial cells, endoxifen resulted in differential effects on the expression levels of estrogen receptors α and β as well as multiple other genes previously implicated in regulating epithelial cell proliferation and hypertrophy. These studies analyze the impact of extended endoxifen exposure on both bone and uterus using a Food and Drug Administration-recommended animal model. Although endoxifen is a more potent breast cancer agent than tamoxifen, the results of the present study demonstrate that endoxifen does not induce bone loss in ovary-intact rats and that it elicits partial agonistic effects on the uterus and skeleton in ovariectomized animals.
Collapse
Affiliation(s)
- Anne Gingery
- Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Kevin S. Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Renee M. McGovern
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905
| | - Joel M. Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Ronald J. Marler
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona 85259
| | - James N. Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
3
|
Endocrine Disrupting Chemicals and Endometrial Cancer: An Overview of Recent Laboratory Evidence and Epidemiological Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030334. [PMID: 28327540 PMCID: PMC5369169 DOI: 10.3390/ijerph14030334] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023]
Abstract
Background: Although exposure to endocrine disruptor compounds (EDCs) has been suggested as a contributing factor to a range of women's health disorders including infertility, polycystic ovaries and the early onset of puberty, considerable challenges remain in attributing cause and effect on gynaecological cancer. Until recently, there were relatively few epidemiological studies examining the relationship between EDCs and endometrial cancer, however, in the last years the number of these studies has increased. Methods: A systematic MEDLINE (PubMed) search was performed and relevant articles published in the last 23 years (from 1992 to 2016) were selected. Results: Human studies and animal experiments are confirming a carcinogenic effect due to the EDC exposure and its carcinogenesis process result to be complex, multifactorial and long standing, thus, it is extremely difficult to obtain the epidemiological proof of a carcinogenic effect of EDCs for the high number of confusing factors. Conclusions: The carcinogenic effects of endocrine disruptors are plausible, although additional studies are needed to clarify their mechanisms and responsible entities. Neverthless, to reduce endocrine disruptors (ED) exposure is mandatory to implement necessary measures to limit exposure, particularly during those periods of life most vulnerable to the impact of oncogenic environmental causes, such as embryonic period and puberty.
Collapse
|
4
|
Schweikart KM, Eldridge SR, Safgren SL, Parman T, Reid JM, Ames MM, Goetz MP, Davis MA. Comparative uterotrophic effects of endoxifen and tamoxifen in ovariectomized Sprague-Dawley rats. Toxicol Pathol 2014; 42:1188-96. [PMID: 24670817 PMCID: PMC4177029 DOI: 10.1177/0192623314525688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endoxifen (4-hydroxy-N-desmethyl-tamoxifen), one of the major active metabolites of tamoxifen, has substantially greater estrogen antagonist properties and antiproliferative effects in breast tumor cells than tamoxifen, a mixed estrogen agonist/antagonist. An associated risk of endometrial cancer and hyperplasia has been linked to the estrogen agonist properties of tamoxifen. We evaluated endoxifen using a classic uterotrophic effects method. Rats were given endoxifen or tamoxifen orally for 3 days. Estradiol was the positive control. Endoxifen and tamoxifen plasma levels exceeded those previously observed clinically. Uterine weight was 3-fold higher in the estradiol group than in the tamoxifen or endoxifen groups, which did not differ from vehicle controls. Tamoxifen and endoxifen caused a greater increase in luminal epithelial cell height than estradiol. Both tamoxifen and endoxifen produced an increase in the stromal BrdU labeling index (LI) that was ≤ estradiol and inversely related to dose, but did not affect luminal epithelial cell BrdU LI. As expected, estradiol increased luminal epithelial cell proliferation. These results indicate that endoxifen induces uterotrophic effects, but is less potent than estradiol in eliciting these effects. Given prior preclinical observations that endoxifen has superior antitumor activity than tamoxifen, the observations of similar uterine effects suggest that the endoxifen risk/benefit ratio may be superior to tamoxifen.
Collapse
Affiliation(s)
- Karen M Schweikart
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Sandy R Eldridge
- Charles River Laboratories Pathology Associates, Frederick, Maryland, USA Present address: Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | - Myrtle A Davis
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abstract
Endocrine disrupting chemicals (EDC) are ubiquitous and persistent compounds that have the capacity to interfere with normal endocrine homoeostasis. The female reproductive tract is exquisitely sensitive to the action of sex steroids, and oestrogens play a key role in normal reproductive function. Malignancies of the female reproductive tract are the fourth most common cancer in women, with endometrial cancer accounting for most cases. Established risk factors for development of endometrial cancer include high BMI and exposure to oestrogens or synthetic compounds such as tamoxifen. Studies on cell and animal models have provided evidence that many EDC can bind oestrogen receptors and highlighted early life exposure as a window of risk for adverse lifelong effects on the reproductive system. The most robust evidence for a link between early life exposure to EDC and adverse reproductive health has come from studies on women who were exposed in utero to diethylstilbestrol. Demonstration that EDC can alter expression of members of the HOX gene cluster highlights one pathway that might be vulnerable to their actions. In summary, evidence for a direct link between EDC exposure and cancers of the reproductive system is currently incomplete. It will be challenging to attribute causality to any single EDC when exposure and development of malignancy may be separated by many years and influenced by lifestyle factors such as diet (a source of phytoestrogens) and adiposity. This review considers some of the evidence collected to date.
Collapse
Affiliation(s)
- Douglas A Gibson
- Queen's Medical Research Institute, MRC Centre for Reproductive Health, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
6
|
Kwekel JC, Forgacs AL, Williams KJ, Zacharewski TR. o-p′-DDT-mediated uterotrophy and gene expression in immature C57BL/6 mice and Sprague–Dawley rats. Toxicol Appl Pharmacol 2013; 273:532-41. [DOI: 10.1016/j.taap.2013.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/04/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
|
7
|
Nault R, Forgacs AL, Dere E, Zacharewski TR. Comparisons of differential gene expression elicited by TCDD, PCB126, βNF, or ICZ in mouse hepatoma Hepa1c1c7 cells and C57BL/6 mouse liver. Toxicol Lett 2013; 223:52-9. [PMID: 23994337 DOI: 10.1016/j.toxlet.2013.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a promiscuous receptor activated by structurally diverse synthetic and natural compounds. AhR activation may lead to ligand-specific changes in gene expression despite similarities in mode of action. Therefore, differential gene expression elicited by four structurally diverse, high affinity AhR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10nM, 30 μg/kg), 3,3',4,4',5-pentachlorobiphenyl (PCB126; 100nM, 300μg/kg), β-naphthoflavone (βNF; 10 μM, 90 mg/kg), and indolo[3,2-b]carbazole (ICZ; 1μM)) in mouse Hepa1c1c7 hepatoma cells and C57BL/6 mouse liver samples were compared. A total of 288, 183, 119, and 131 Hepa1c1c7 genes were differentially expressed (|fold-change|≥ 1.5, P1(t)≥ 0.9999) by TCDD, βNF, PCB126, and ICZ, respectively. Only ∼35% were differentially expressed by all 4 ligands in Hepa1c1c7 cells. In vivo, 661, 479, and 265 hepatic genes were differentially expressed following treatment with TCDD, βNF, and PCB126, respectively. Similar to Hepa1c1c7 cells, ≤ 34% of gene expression changes were common across all ligands. Principal components analysis identified time-dependent gene expression divergence. Comparisons of ligand-elicited expression between Hepa1c1c7 cells and mouse liver identified only 11 common gene expression changes across all ligands. Although metabolism may explain some ligand-specific gene expression changes, PCB126, βNF, and ICZ also elicited divergent expression compared to TCDD, suggestive of selective AhR modulation.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
8
|
Dere E, Lee AW, Burgoon LD, Zacharewski TR. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genomics 2011; 12:193. [PMID: 21496263 PMCID: PMC3089798 DOI: 10.1186/1471-2164-12-193] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 04/15/2011] [Indexed: 11/26/2022] Open
Abstract
Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that elicits a broad spectrum of toxic effects in a species-specific manner. Current risk assessment practices routinely extrapolate results from in vivo and in vitro rodent models to assess human risk. In order to further investigate the species-specific responses elicited by TCDD, temporal gene expression responses in human HepG2, mouse Hepa1c1c7 and rat H4IIE cells were compared. Results Microarray analysis identified a core set of conserved gene expression responses across species consistent with the role of AhR in mediating adaptive metabolic responses. However, significant species-specific as well as species-divergent responses were identified. Computational analysis of the regulatory regions of species-specific and -divergent responses suggests that dioxin response elements (DREs) are involved. These results are consistent with in vivo rat vs. mouse species-specific differential gene expression, and more comprehensive comparative DRE searches. Conclusions Comparative analysis of human HepG2, mouse Hepa1c1c7 and rat H4IIE TCDD-elicited gene expression responses is consistent with in vivo rat-mouse comparative gene expression studies, and more comprehensive comparative DRE searches, suggesting that AhR-mediated gene expression is species-specific.
Collapse
Affiliation(s)
- Edward Dere
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|