1
|
Duvvuri B, Pachman LM, Morgan G, Khojah AM, Klein-Gitelman M, Curran ML, Doty S, Lood C. Neutrophil Extracellular Traps in Tissue and Periphery in Juvenile Dermatomyositis. Arthritis Rheumatol 2020; 72:348-358. [PMID: 31403247 DOI: 10.1002/art.41078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neutrophils are key immune cells participating in host defense through several mechanisms, including the formation of neutrophil extracellular traps (NETs). This study was undertaken to investigate the role of neutrophils in juvenile dermatomyositis (JDM). METHODS Electron microscopy was used to identify neutrophils in tissue. NETs were also imaged using fluorescence microscopy and quantified using a myeloperoxidase-DNA enzyme-linked immunosorbent assay (ELISA) in plasma obtained from healthy children (n = 20), disease controls (n = 29), JDM patients (n = 66), and JDM patients with history of calcifications (n = 20). Clinical data included disease activity scores and complement C4 levels. Levels of immune complexes (ICs) and calprotectin were analyzed using ELISA. RESULTS Using electron microscopy, neutrophils were found to infiltrate affected muscle tissue, engulfing deposited calcium crystals. Uptake of the crystals led to neutrophil activation (P < 0.01) and subsequent phosphatidylinositol 3-kinase- and NADPH oxidase-dependent but peptidylarginine deiminase 4-independent formation of NETs, which contained mitochondrial DNA (P < 0.05), as confirmed in vivo (P < 0.001) and in vitro (P < 0.01). Peripheral NET levels were associated with calcinosis (P = 0.01), ICs (P = 0.008), and interleukin-8 levels (P = 0.004). Children with JDM had impaired NET clearance (P = 0.01), associated with autoantibody profiles including melanoma differentiation-associated protein 5 (P = 0.005), and depressed complement C4 levels (r = -0.72, P = 0.002). Furthermore, children with JDM showed evidence of neutrophil activation, with elevated levels of peroxidase activity (P = 0.02) and calprotectin (P < 0.01), which were associated with disease activity (P = 0.007), and dyslipidemia (odds ratio 4.7, P < 0.05). CONCLUSION We found novel mechanisms of both calcium crystal-mediated neutrophil activation and cell death in JDM pathophysiology. Targeting this pathway may reduce the frequency and extent of calcinosis, as well as prevent long-term development of comorbidities, including atherosclerosis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gabrielle Morgan
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amer M Khojah
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marisa Klein-Gitelman
- Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Stephen Doty
- Hospital for Special Surgery, New York, New York
| | | |
Collapse
|
2
|
Li J, Yuan X, March ME, Yao X, Sun Y, Chang X, Hakonarson H, Xia Q, Meng X, Li J. Identification of Target Genes at Juvenile Idiopathic Arthritis GWAS Loci in Human Neutrophils. Front Genet 2019; 10:181. [PMID: 30972099 PMCID: PMC6445851 DOI: 10.3389/fgene.2019.00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease among children which could cause severe disability. Genomic studies have discovered substantial number of risk loci for JIA, however, the mechanism of how these loci affect JIA development is not fully understood. Neutrophil is an important cell type involved in autoimmune diseases. To better understand the biological function of genetic loci in neutrophils during JIA development, we took an integrated multi-omics approach to identify target genes at JIA risk loci in neutrophils and constructed a protein-protein interaction network via a machine learning approach. We identified genes likely to be JIA risk loci targeted genes in neutrophils which could contribute to JIA development.
Collapse
Affiliation(s)
- Junyi Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xiucheng Yuan
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Michael E. March
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xueming Yao
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yan Sun
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xiao Chang
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qianghua Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xinyi Meng
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jin Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Association of Inflammatory Bowel Disease with Arthritis: Evidence from In Silico Gene Expression Patterns and Network Topological Analysis. Interdiscip Sci 2017; 11:387-396. [DOI: 10.1007/s12539-017-0272-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
|
4
|
Abstract
Juvenile dermatomyositis is a complex illness characterized by vascular/perivascular inflammation, primarily in the skin and muscles. In this review, we discuss how proteomic and genomic technologies have expanded our understanding of the immune pathogenesis of this disease. We will also discuss further directions that the field may take to use existing and developing technologies to further our understanding of this often-perplexing disease.
Collapse
Affiliation(s)
- Rie Karasawa
- Department of Pediatrics and Genetics, Genomics & Bioinformatics Program, University at Buffalo
| | | |
Collapse
|
5
|
Donn R, De Leonibus C, Meyer S, Stevens A. Network analysis and juvenile idiopathic arthritis (JIA): a new horizon for the understanding of disease pathogenesis and therapeutic target identification. Pediatr Rheumatol Online J 2016; 14:40. [PMID: 27411317 PMCID: PMC4942903 DOI: 10.1186/s12969-016-0078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a clinically diverse and genetically complex autoimmune disease. Currently, there is very limited understanding of the potential underlying mechanisms that result in the range of phenotypes which constitute JIA.The elucidation of the functional relevance of genetic associations with phenotypic traits is a fundamental problem that hampers the translation of genetic observations to plausible medical interventions. Genome wide association studies, and subsequent fine-mapping studies in JIA patients, have identified many genetic variants associated with disease. Such approaches rely on 'tag' single nucleotide polymorphisms (SNPs). The associated SNPs are rarely functional variants, so the extrapolation of genetic association data to the identification of biologically meaningful findings can be a protracted undertaking. Integrative genomics aims to bridge the gap between genotype and phenotype.Systems biology, principally through network analysis, is emerging as a valuable way to identify biological pathways of relevance to complex genetic diseases. This review aims to highlight recent findings in systems biology related to JIA in an attempt to assist in the understanding of JIA pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Rachelle Donn
- Musculoskeletal Research Group, The Centre For Musculoskeletal Research, University of Manchester, 2nd Floor, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Chiara De Leonibus
- Manchester Academic Health Sciences Centre, Institute for Human Development, Royal Manchester Children’s Hospital, 5th Floor Research, Oxford Road, Manchester, M13 9WL UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, University of Manchester, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Sciences Centre, Institute for Human Development, Royal Manchester Children's Hospital, 5th Floor Research, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
6
|
Hu Z, Jiang K, Frank MB, Chen Y, Jarvis JN. Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 2016; 6:27453. [PMID: 27271962 PMCID: PMC4895221 DOI: 10.1038/srep27453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
NIH projects such as ENCODE and Roadmap Epigenomics have revealed surprising complexity in the transcriptomes of mammalian cells. In this study, we explored transcriptional complexity in human neutrophils, cells generally regarded as nonspecific in their functions and responses. We studied distinct human disease phenotypes and found that, at the gene, gene isoform, and miRNA level, neutrophils exhibit considerable specificity in their transcriptomes. Thus, even cells whose responses are considered non-specific show tailoring of their transcriptional repertoire toward specific physiologic or pathologic contexts. We also found that miRNAs had a global impact on neutrophil transcriptome and are associated with innate immunity in juvenile idiopathic arthritis (JIA). These findings have important implications for our understanding of the link between genes, non-coding transcripts and disease phenotypes.
Collapse
Affiliation(s)
- Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics &Life Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.,Department of Ophthalmology, Department of Biostatistics, Department of Medicine, State University of New York at Buffalo, Buffalo, NY 14260, USA.,SUNY Eye Institute, Buffalo, NY 14260, USA
| | - Kaiyu Jiang
- Department of Pediatrics, Division of Allergy/Immunology/Rheumatology, University at Buffalo, Buffalo, NY 14203, USA
| | - Mark Barton Frank
- Arthritis &Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yanmin Chen
- Department of Pediatrics, Division of Allergy/Immunology/Rheumatology, University at Buffalo, Buffalo, NY 14203, USA
| | - James N Jarvis
- Department of Pediatrics, Division of Allergy/Immunology/Rheumatology, University at Buffalo, Buffalo, NY 14203, USA.,Graduate Program in Genetics, Genomics, &Bioinformatics, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Du N, Jiang K, Sawle AD, Frank MB, Wallace CA, Zhang A, Jarvis JN. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Med 2015; 7:109. [PMID: 26497493 PMCID: PMC4619406 DOI: 10.1186/s13073-015-0227-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have previously shown that childhood-onset rheumatic diseases show aberrant patterns of gene expression that reflect pathology-associated co-expression networks. In this study, we used novel computational approaches to examine how disease-associated networks are altered in one of the most common rheumatic diseases of childhood, juvenile idiopathic arthritis (JIA). METHODS Using whole blood gene expression profiles derived from children in a pediatric rheumatology clinical trial, we used a network approach to understanding the impact of therapy and the underlying biology of response/non-response to therapy. RESULTS We demonstrate that therapy for JIA is associated with extensive re-ordering of gene expression networks, even in children who respond inadequately to therapy. Furthermore, we observe distinct differences in the evolution of specific network properties when we compare children who have been treated successfully with those who have inadequate treatment response. CONCLUSIONS Despite the inherent noisiness of whole blood gene expression data, our findings demonstrate how therapeutic response might be mapped and understood in pathologically informative cells in a broad range of human inflammatory diseases.
Collapse
Affiliation(s)
- Nan Du
- Department of Computer Sciences and Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Kaiyu Jiang
- Department of Pediatrics, Rheumatology Research, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Ashley D Sawle
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Mark Barton Frank
- Oklahoma Medical Research Foundation, Clinical Immunology Program, Oklahoma City, OK, USA.
| | - Carol A Wallace
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Aidong Zhang
- Department of Computer Sciences and Engineering, University at Buffalo, Buffalo, NY, USA.
| | - James N Jarvis
- Department of Pediatrics, Rheumatology Research, University at Buffalo School of Medicine, Buffalo, NY, USA.
- Genetics, Genomics, and Bioinformatics Program, University at Buffalo, Buffalo, NY, USA.
- Pediatric Rheumatology Research, University at Buffalo Clinical & Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Jiang K, Sun X, Chen Y, Shen Y, Jarvis JN. RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states. BMC Med Genomics 2015; 8:55. [PMID: 26310571 PMCID: PMC4551565 DOI: 10.1186/s12920-015-0128-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The transcriptional complexity of mammalian cells suggests that they have broad abilities to respond to specific environmental stimuli and physiologic contexts. These abilities were not apparent a priori from the structure of mammalian genomes, but have been identified through detailed transcriptome analyses. In this study, we examined the transcriptomes of cells of the innate immune system, human neutrophils, using RNA sequencing (RNAseq). METHODS We sequenced poly-A RNA from nine individual samples corresponding to specific phenotypes: three children with active, untreated juvenile idiopathic arthritis (JIA)(AD), three children with the same disease whose disease was inactive on medication (CRM), and three children with cystic fibrosis (CF). RESULTS We demonstrate that transcriptomes of neutrophils, typically considered non-specific in their responses and functions, display considerable specificity in their transcriptional repertoires dependent on the pathologic context, and included genes, gene isoforms, and long non-coding RNA transcripts. Furthermore, despite the small sample numbers, these findings demonstrate the potential of RNAseq approaches to biomarker development in rheumatic diseases. CONCLUSIONS These data demonstrate the capacity of cells previously considered non-specific in function to adapt their transcriptomes to specific biologic contexts. These data also provide insight into previously unrecognized pathological pathways and show considerable promise for elucidating disease and disease-state specific regulatory networks.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Xiaoyun Sun
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, USA.
| | - Yanmin Chen
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Yufeng Shen
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, USA. .,Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA.
| | - James N Jarvis
- Department of Pediatrics, State University of New York at Buffalo School of Medicine, Buffalo, NY, USA.
| |
Collapse
|
9
|
Stevens A, Meyer S, Hanson D, Clayton P, Donn RP. Network analysis identifies protein clusters of functional importance in juvenile idiopathic arthritis. Arthritis Res Ther 2014; 16:R109. [PMID: 24886659 PMCID: PMC4062926 DOI: 10.1186/ar4559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA). Methods JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene expression data were integrated with the MEN and clusters of functionally important proteins derived using MCODE. Results A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the most functionally related components of the network, comprised of seven clusters, with distinct functional characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for oligoarticular and RF-ve polyarticular JIA respectively. Conclusions This first report of the application of network biology to JIA, integrating genetic association findings and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for targeted pharmacological intervention.
Collapse
|
10
|
Jiang K, Frank M, Chen Y, Osban J, Jarvis JN. Genomic characterization of remission in juvenile idiopathic arthritis. Arthritis Res Ther 2013; 15:R100. [PMID: 24000795 PMCID: PMC4062846 DOI: 10.1186/ar4280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction The attainment of remission has become an important end point for clinical trials in juvenile idiopathic arthritis (JIA), although we do not yet have a full understanding of what remission is at the cell and molecular level. Methods Two independent cohorts of patients with JIA and healthy child controls were studied. RNA was prepared separately from peripheral blood mononuclear cells (PBMC) and granulocytes to identify differentially expressed genes using whole genome microarrays. Expression profiling results for selected genes were confirmed by quantitative, real-time polymerase chain reaction (RT-PCR). Results We found that remission in JIA induced by either methotrexate (MTX) or MTX plus a TNF inhibitor (etanercept, Et) (MTX + Et) is characterized by numerous differences in gene expression in peripheral blood mononuclear cells and in granulocytes compared with healthy control children; that is, remission is not a restoration of immunologic normalcy. Network analysis of the differentially expressed genes demonstrated that the steroid hormone receptor superfamily member hepatocyte nuclear factor 4 alpha (HNF4α) is a hub in several of the gene networks that distinguished children with arthritis from controls. Confocal microscopy revealed that HNF4a is present in both T lymphocytes and granulocytes, suggesting a previously unsuspected role for this transcription factor in regulating leukocyte function and therapeutic response in JIA. Conclusions These findings provide a framework from which to understand therapeutic response in JIA and, furthermore, may be used to develop strategies to increase the frequency with which remission is achieved in adult forms of rheumatoid arthritis.
Collapse
|
11
|
Abstract
Recombinant AAV vectors have been used in clinical trials since the mid-1990s, with over 300 subjects enrolled in studies. Although there are not yet licensed AAV products, there are several clear examples of clinical efficacy, and recombinant AAV vectors have a strong safety record after administration both locally and systemically. This chapter provides a review of two types of studies that have shown efficacy, including studies for Leber's congenital amaurosis, a hereditary retinal degenerative disorder in which subretinal administration of AAV has shown efficacy in terms of improvement in multiple measures of visual/retinal function; and of Parkinson's disease which has also shown improvement in clinical and imaging studies after gene transfer to the CNS. The chapter also provides a detailed review of the results of studies of gene therapy for hemophilia, in which short-term efficacy was achieved, but expression of the donated gene failed to persist, likely due to an immune response to the vector. Safety issues relating to AAV-mediated gene transfer are discussed, including a detailed review of the single death to have occurred in an AAV gene therapy trial (likely unrelated to the AAV vector), and of issues related to integration and insertional mutagenesis, risk of germline transmission, and risks related to immune responses to either vector or transgene product. Finally, protocols for determining the presence of vector DNA in body fluids using real-time quantitative PCR, and for isolating, cryopreserving, and testing peripheral blood mononuclear cells for interferon-γ (IFN-γ) responses to capsid are described in detail.
Collapse
|
12
|
Jarvis JN, Frank MB. Functional genomics and rheumatoid arthritis: where have we been and where should we go? Genome Med 2010; 2:44. [PMID: 20670388 PMCID: PMC2923736 DOI: 10.1186/gm165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies in model organisms and humans have begun to reveal the complexity of the transcriptome. In addition to serving as passive templates from which genes are translated, RNA molecules are active, functional elements of the cell whose products can detect, interact with, and modify other transcripts. Gene expression profiling is the method most commonly used thus far to enrich our understanding of the molecular basis of rheumatoid arthritis in adults and juvenile idiopathic arthritis in children. The feasibility of this approach for patient classification (for example, active versus inactive disease, disease subsets) and improving prognosis (for example, response to therapy) has been demonstrated over the past 7 years. Mechanistic understanding of disease-related differences in gene expression must be interpreted in the context of interactions with transcriptional regulatory molecules and epigenetic alterations of the genome. Ongoing work regarding such functional complexities in the human genome will likely bring both insight and surprise to our understanding of rheumatoid arthritis.
Collapse
Affiliation(s)
- James N Jarvis
- Department of Pediatrics, Pediatric Rheumatology Research, Basic Science Education Building #235A, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
13
|
Jiang K, Krous LC, Knowlton N, Chen Y, Frank MB, Cadwell C, Centola M, Jarvis JN. Ablation of Stat3 by siRNA alters gene expression profiles in JEG-3 cells: a systems biology approach. Placenta 2009; 30:806-15. [PMID: 19616846 DOI: 10.1016/j.placenta.2009.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 01/27/2023]
Abstract
Control of inflammation at the maternal-fetal interface is a critical element in mammalian pregnancy. Previous work from our laboratory has shown that Stat3 may be a placental mediator involved in maintaining immunologic homeostasis at the maternal-fetal interface. The aim of the current study is to further elucidate the role of Stat3 in response to inflammation. As ablation of Stat3 in mice results in embryonic lethality, we evaluated the role of Stat3 in vitro using an siRNA approach. Trophoblast-like JEG-3 cells were transfected with an siRNA construct specific to Stat3. Experimental and control cells were exposed to conditioned medium from PHA-activated peripheral blood mononuclear cells and incubated for 45 min. Cells were then collected and RNA isolated for transcriptional profiling using human Affymetrix U133 plus 2.0 GeneChips. Differences in gene expression between control and Stat3-ablated cells were evaluated using conventional statistical methods. Fifty-two genes were detected as up-regulated in conditioned medium in both mock transfected and in Stat3 siRNA transfected JEG-3 cells. Two genes (EPAS1 and RASGEF1B) were up-regulated only in cells transfected with negative control siRNA, while 36 genes were up-regulated only in cells transfected with Stat3 siRNA. Sixty genes were differentially expressed between Stat3 siRNA transfected cells relative to mock transfected cells both in basal and conditioned medium. These included 31 genes up-regulated with Stat3 siRNA transfected cells and 29 genes down-regulated with Stat3 siRNA. Eleven genes were differentially expressed only in basal medium. Seven of these were up-regulated in the presence of Stat3 siRNA and four were down-regulated. Nine genes were differentially expressed only in conditioned medium. Six of these were up-regulated and three down-regulated in the presence of Stat3 siRNA. Off-target effects were excluded in a second set of experiments in which Stat3 mRNA was targeted at a different site and quantitative real-time PCR performed on selected genes derived from the microarray analysis. While some of the genes that showed differential expression between Stat3-ablated cells and mock transfected controls were genes typically associated with immune response (e.g., CCR7 and IRAK1), in silico modeling of the microarray data also revealed complex networks of signaling molecules and molecules associated with cellular metabolism previously seen in transcription factor ablation in model organisms. We conclude thus: Stat3 controls a specific gene set in trophoblast-like JEG-3 cells. While some differentially expressed genes and in silico models of their functions are consistent with the hypothesis that Stat3 plays a role in regulating inflammation, Stat3-mediated response to inflammation appears to also involve complex homeostatic adaptations of a non-immunologic nature.
Collapse
Affiliation(s)
- K Jiang
- Department of Pediatrics, Pediatric Rheumatology Research, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|