1
|
Buzdin A, Sorokin M, Garazha A, Glusker A, Aleshin A, Poddubskaya E, Sekacheva M, Kim E, Gaifullin N, Giese A, Seryakov A, Rumiantsev P, Moshkovskii S, Moiseev A. RNA sequencing for research and diagnostics in clinical oncology. Semin Cancer Biol 2019; 60:311-323. [PMID: 31412295 DOI: 10.1016/j.semcancer.2019.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Molecular diagnostics is becoming one of the major drivers of personalized oncology. With hundreds of different approved anticancer drugs and regimens of their administration, selecting the proper treatment for a patient is at least nontrivial task. This is especially sound for the cases of recurrent and metastatic cancers where the standard lines of therapy failed. Recent trials demonstrated that mutation assays have a strong limitation in personalized selection of therapeutics, consequently, most of the drugs cannot be ranked and only a small percentage of patients can benefit from the screening. Other approaches are, therefore, needed to address a problem of finding proper targeted therapies. The analysis of RNA expression (transcriptomic) profiles presents a reasonable solution because transcriptomics stands a few steps closer to tumor phenotype than the genome analysis. Several recent studies pioneered using transcriptomics for practical oncology and showed truly encouraging clinical results. The possibility of directly measuring of expression levels of molecular drugs' targets and profiling activation of the relevant molecular pathways enables personalized prioritizing for all types of molecular-targeted therapies. RNA sequencing is the most robust tool for the high throughput quantitative transcriptomics. Its use, potentials, and limitations for the clinical oncology will be reviewed here along with the technical aspects such as optimal types of biosamples, RNA sequencing profile normalization, quality controls and several levels of data analysis.
Collapse
Affiliation(s)
- Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Alex Aleshin
- Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Elena Poddubskaya
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Vitamed Oncological Clinics, Moscow, Russia
| | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ella Kim
- Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nurshat Gaifullin
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | | | | | | | - Sergey Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alexey Moiseev
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Suntsova M, Gaifullin N, Allina D, Reshetun A, Li X, Mendeleeva L, Surin V, Sergeeva A, Spirin P, Prassolov V, Morgan A, Garazha A, Sorokin M, Buzdin A. Atlas of RNA sequencing profiles for normal human tissues. Sci Data 2019; 6:36. [PMID: 31015567 PMCID: PMC6478850 DOI: 10.1038/s41597-019-0043-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Comprehensive analysis of molecular pathology requires a collection of reference samples representing normal tissues from healthy donors. For the available limited collections of normal tissues from postmortal donors, there is a problem of data incompatibility, as different datasets generated using different experimental platforms often cannot be merged in a single panel. Here, we constructed and deposited the gene expression database of normal human tissues based on uniformly screened original sequencing data. In total, 142 solid tissue samples representing 20 organs were taken from post-mortal human healthy donors of different age killed in road accidents no later than 36 hours after death. Blood samples were taken from 17 healthy volunteers. We then compared them with the 758 transcriptomic profiles taken from the other databases. We found that overall 463 biosamples showed tissue-specific rather than platform- or database-specific clustering and could be aggregated in a single database termed Oncobox Atlas of Normal Tissue Expression (ANTE). Our data will be useful to all those working with the analysis of human gene expression.
Collapse
Affiliation(s)
- Maria Suntsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria Allina
- Pathology Department, Morozov Children's City Hospital, 4th Dobryninsky Lane 1/9, Moscow, 119049, Russia
| | | | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Larisa Mendeleeva
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Vadim Surin
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Anna Sergeeva
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street, 32, Moscow, 119991, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street, 32, Moscow, 119991, Russia
| | | | - Andrew Garazha
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA
- Oncobox ltd., Moscow, 121205, Russia
| | - Maxim Sorokin
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA.
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Anton Buzdin
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA
- Oncobox ltd., Moscow, 121205, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
5
|
Ojala KA, Kilpinen SK, Kallioniemi OP. Classification of unknown primary tumors with a data-driven method based on a large microarray reference database. Genome Med 2011; 3:63. [PMID: 21955394 PMCID: PMC3239238 DOI: 10.1186/gm279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We present a new method to analyze cancer of unknown primary origin (CUP) samples. Our method achieves good results with classification accuracy (88% leave-one-out cross validation for primary tumors from 56 categories, 78% for CUP samples), and can also be used to study CUP samples on a gene-by-gene basis. It is not tied to any a priori defined gene set as many previous methods, and is adaptable to emerging new information.
Collapse
Affiliation(s)
- Kalle A Ojala
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 00140 Helsinki, Finland.
| | | | | |
Collapse
|