1
|
Xiong J, Chen S, Liu J. Acute liver steatosis signals the chromatin for regeneration via MIER1. Metabol Open 2024; 23:100258. [PMID: 39351485 PMCID: PMC11440081 DOI: 10.1016/j.metop.2023.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2024] Open
Abstract
During liver regeneration, especially after a hepatectomy, hepatocytes experience significant lipid accumulation. These transiently accumulated lipids are generally believed to provide substrates for energy supply or membrane biomaterials for newly generated hepatocytes. Remarkably, a recent study found that acute lipid accumulation during regeneration can act as a signal for chromatin remodeling to regulate regeneration. Chen, Y.H., et al. identified MIER1 (mesoderm induction early response protein 1) as a crucial inhibitor of liver regeneration through in vivo CRISPR screening. MIER1 binds to and restrains cell cycle genes' expression. During liver regeneration, acute lipid accumulation suppresses MIER1 translation via the EIF2S pathway, resulting in transient down-regulation of MIER1 protein, which promotes cell cycle gene expression and liver regeneration. Interestingly, the researchers also found that the dynamic regulation of MIER1 was impaired in fatty and aging livers with chronic steatosis, while of knockout of MIER1 in these animals improved their regenerative capacity. In conclusion, this study provides valuable insights into the complex mechanisms underlying liver regeneration and highlights the potential therapeutic applications of targeting MIER1 for improving liver regeneration in disease states associated with impaired lipid homeostasis.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
3
|
Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins M, Dominguez C, Schwabe JR. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Nucleic Acids Res 2023; 51:6006-6019. [PMID: 37099381 PMCID: PMC10325919 DOI: 10.1093/nar/gkad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.
Collapse
Affiliation(s)
- Siyu Wang
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy J Ragan
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dipti Vashi
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyril Dominguez
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Chen Y, Chen L, Wu X, Zhao Y, Wang Y, Jiang D, Liu X, Zhou T, Li S, Wei Y, Liu Y, Hu C, Zhou B, Qin J, Ying H, Ding Q. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat Commun 2023; 14:1521. [PMID: 36934083 PMCID: PMC10024732 DOI: 10.1038/s41467-023-37247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The early phase lipid accumulation is essential for liver regeneration. However, whether this acute lipid accumulation can serve as signals to direct liver regeneration rather than simply providing building blocks for cell proliferation remains unclear. Through in vivo CRISPR screening, we identify MIER1 (mesoderm induction early response 1) as a key epigenetic regulator that bridges the acute lipid accumulation and cell cycle gene expression during liver regeneration in male animals. Physiologically, liver acute lipid accumulation induces the phosphorylation of EIF2S1(eukaryotic translation initiation factor 2), which consequently attenuated Mier1 translation. MIER1 downregulation in turn promotes cell cycle gene expression and regeneration through chromatin remodeling. Importantly, the lipids-EIF2S1-MIER1 pathway is impaired in animals with chronic liver steatosis; whereas MIER1 depletion significantly improves regeneration in these animals. Taken together, our studies identify an epigenetic mechanism by which the early phase lipid redistribution from adipose tissue to liver during regeneration impacts hepatocyte proliferation, and suggest a potential strategy to boost liver regeneration.
Collapse
Affiliation(s)
- Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Dacheng Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Xuzhou, Shandong, 276000, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
5
|
Toomer G, Workman A, Harrison KS, Stayton E, Hoyt PR, Jones C. Stress Triggers Expression of Bovine Herpesvirus 1 Infected Cell Protein 4 (bICP4) RNA during Early Stages of Reactivation from Latency in Pharyngeal Tonsil. J Virol 2022; 96:e0101022. [PMID: 36416585 PMCID: PMC9749472 DOI: 10.1128/jvi.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.
Collapse
Affiliation(s)
- Gabriela Toomer
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Erin Stayton
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Peter R. Hoyt
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
6
|
Keogh K, Kenny DA, Waters SM. Gene co-expression networks contributing to the expression of compensatory growth in metabolically active tissues in cattle. Sci Rep 2019; 9:6093. [PMID: 30988346 PMCID: PMC6465245 DOI: 10.1038/s41598-019-42608-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Compensatory growth (CG) is an accelerated growth phenomenon which occurs in animals upon re-alimentation following a period of dietary restriction. The objective of this study was to perform gene co-expression analysis on metabolic tissues of animals undergoing CG, in order to elucidate the molecular control governing this phenomenon. Thirty Holstein Friesian bulls were fed a restricted diet for 125 days, after which they received feed ad libitum. Following 55 days of ad libitum feeding all animals were slaughtered. RNAseq and gene co-expression analyses were performed on tissue samples collected at slaughter including liver, rumen papillae and jejunum epithelium tissues. A period of CG resulted in 15 networks of co-expressed genes. One network of genes, involved in proteasome core complex, signal transduction and protein synthesis was found to be similar across liver and jejunum tissue datasets (r = 0.68, P = 0.04). Results from this study also showed that a large portion of co-expressed genes had not previously been implicated in the expression of CG, thus this study identifies novel genes involved in controlling CG across tissues, with hub genes holding potential for use as biomarkers for the selection of animals with a greater propensity to display CG.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland.
| |
Collapse
|
7
|
Peng M, Hu Y, Song W, Duan S, Xu Q, Ding Y, Geng J, Zhou J. MIER3 suppresses colorectal cancer progression by down-regulating Sp1, inhibiting epithelial-mesenchymal transition. Sci Rep 2017; 7:11000. [PMID: 28887525 PMCID: PMC5591250 DOI: 10.1038/s41598-017-11374-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023] Open
Abstract
Mesoderm induction early response 1, family member 3 (MIER3) has recently been identified as a potential cancer susceptibility gene. However, the expression pattern and the role of MIER3 in the progression of colorectal cancer (CRC) have not yet been well characterized. Here, we reported that MIER3 was significantly reduced in human primary colorectal cancer and was associated with CRC metastasis and poor prognosis. Moreover, the up-regulation of MIER3 expression significantly inhibited CRC cell proliferation, migration and invasion in vitro and repressed tumor growth and metastasis in vivo. In contrast, down-regulation of MIER3 could promote the aggressive behaviors of CRC cells. Furthermore, our study showed that MIER3 inhibited cell proliferation and invasion partially via reduction of Sp1 and subsequent suppression of epithelial-mesenchymal transition (EMT). In conclusion, our data suggested that MIER3 plays a potential tumor suppressor role in CRC progression and may be a potentially valuable clinical prognostic marker of this disease.
Collapse
Affiliation(s)
- Man Peng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J Neurovirol 2017; 23:520-538. [PMID: 28321697 DOI: 10.1007/s13365-017-0522-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
Varicella zoster virus (VZV) causes varicella during acute infection and establishes latency in the sensory ganglia. Reactivation of VZV results in herpes zoster, a debilitating and painful disease. It is believed that VZV reactivates due to a decline in cell-mediated immunity; however, the roles that CD4 versus CD8 T cells play in the prevention of herpes zoster remain poorly understood. To address this question, we used a well-characterized model of VZV infection where rhesus macaques are intrabronchially infected with the homologous simian varicella virus (SVV). Latently infected rhesus macaques were thymectomized and depleted of either CD4 or CD8 T cells to induce selective senescence of each T cell subset. After T cell depletion, the animals were transferred to a new housing room to induce stress. SVV reactivation (viremia in the absence of rash) was detected in three out of six CD8-depleted and two out of six CD4-depleted animals suggesting that both CD4 and CD8 T cells play a critical role in preventing SVV reactivation. Viral loads in multiple ganglia were higher in reactivated animals compared to non-reactivated animals. In addition, reactivation results in sustained transcriptional changes in the ganglia that enriched to gene ontology and diseases terms associated with neuronal function and inflammation indicative of potential damage as a result of viral reactivation. These studies support the critical role of cellular immunity in preventing varicella virus reactivation and indicate that reactivation results in long-lasting remodeling of the ganglia transcriptome.
Collapse
|
9
|
Differential HDAC1 and 2 Recruitment by Members of the MIER Family. PLoS One 2017; 12:e0169338. [PMID: 28046085 PMCID: PMC5207708 DOI: 10.1371/journal.pone.0169338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
The mier family consists of three related genes encoding ELM2-SANT containing proteins. MIER1 has been well characterized and is known to function in transcriptional repression through its ability to recruit HDAC1 and 2. Little is known about MIER2 or MIER3 function and no study characterizing these two proteins has been published. In this report, we investigate MIER2 and MIER3 localization and function. Confocal analysis revealed that, while MIER2 and MIER3 are mainly nuclear proteins, a substantial proportion (32%) of MIER2 is localized in the cytoplasm. Co-immunoprecipitation experiments demonstrated that the MIER proteins do not dimerize; that MIER2, but not MIER3, can recruit HDACs; and that recruitment is cell line-dependent. MIER2 was associated with HDAC1 and HDAC2 in HEK293 cells, but only with HDAC1 in MCF7 and HeLa cells. Little or no MIER3 co-immunoprecipitated with either HDAC1 or 2 in any of the three cell lines tested. By contrast, HDAC1 and 2 were readily detected in MIER1α complexes in all three cell lines. Histone deacetylase assays confirmed that MIER2, but not MIER3 complexes, have associated deacetylase activity, leading to the conclusion that MIER3 does not function in HDAC recruitment in these cell lines. In contrast to what has been reported for other ELM2-SANT associated HDACs, addition of D-myo-inositol-1,4,5,6-tetrakisphosphate led to only a small increase in MIER1α associated deacetylase activity and no effect on that associated with MIER2. Deletion analysis revealed that HDAC recruitment occurs through the ELM2 domain. Finally, using site-directed mutagenesis, we show that, like MIER1, 228W in the ELM2 domain is a critical residue for HDAC recruitment by MIER2.
Collapse
|
10
|
Li S, Paterno GD, Gillespie LL. Insulin and IGF-1, but not 17β-estradiol, alter the subcellular localization of MIER1α in MCF7 breast carcinoma cells. BMC Res Notes 2015; 8:356. [PMID: 26281834 PMCID: PMC4539687 DOI: 10.1186/s13104-015-1336-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MIER1α is a transcriptional regulator that interacts with estrogen receptor α and inhibits estrogen-stimulated growth of breast carcinoma cells. Interestingly, analysis of MIER1α subcellular localization in breast samples revealed a stepwise shift from the nucleus to the cytoplasm during progression to invasive carcinoma. Previously, we demonstrated that MIER1α is nuclear in MCF7 cells yet it does not contain a nuclear localization signal. Instead MIER1α is targeted to the nucleus through interaction and co-transport with HDAC 1 and 2. RESULTS In this study, we demonstrate that treatment of MCF7 breast carcinoma cells with either insulin or insulin-like growth factor affects the subcellular localization of MIER1α. Both factors reduce the percentage of cells with nuclear MIER1α from 81 and 89 to 41 and 56%, respectively. Treatment with 17β-estradiol, on the other hand, had no effect and MIER1α remained nuclear. CONCLUSIONS Our data demonstrate that insulin and IGF-1 can contribute to loss of nuclear MIER1α in the MCF7 breast carcinoma cell line.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Gary D Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Laura L Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| |
Collapse
|
11
|
Mascarenhas CDC, Ferreira da Cunha A, Brugnerotto AF, Gambero S, de Almeida MH, Carazzolle MF, Pagnano KBB, Traina F, Costa FFD, de Souza CA. Identification of target genes using gene expression profile of granulocytes from patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Leuk Lymphoma 2014; 55:1861-9. [PMID: 24144310 DOI: 10.3109/10428194.2013.855311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.
Collapse
Affiliation(s)
- Cintia do Couto Mascarenhas
- Hematology and Hemotherapy Center, Institute of Biology, University of Campinas (UNICAMP) , Campinas, São Paulo , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li S, Paterno GD, Gillespie LL. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells. PLoS One 2013; 8:e84046. [PMID: 24376786 PMCID: PMC3869823 DOI: 10.1371/journal.pone.0084046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a ‘piggyback’ mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA). Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+) and VC5 (ERα-). Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5). These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gary D. Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Laura L. Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
13
|
Roversi FM, da Cunha AF, Brugnerotto AF, Carazzolle MF, de Albuquerque DM, Lanaro C, Machado-Neto JA, Olalla Saad ST, da Costa FF. Gene Expression Analysis of the Brazilian Type of Hereditary Persistence of Fetal Hemoglobin: Identification of Genes that Could be Related to γ-Globin Activation. Hemoglobin 2013; 37:516-35. [DOI: 10.3109/03630269.2013.818016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Gatta V, Tatone C, Ciriminna R, Vento M, Franchi S, d'Aurora M, Sperduti S, Cela V, Borzì P, Palermo R, Stuppia L, Artini PG. Gene expression profiles of cumulus cells obtained from women treated with recombinant human luteinizing hormone + recombinant human follicle-stimulating hormone or highly purified human menopausal gonadotropin versus recombinant human follicle-stimulating hormone alone. Fertil Steril 2013; 99:2000-8.e1. [PMID: 23472943 DOI: 10.1016/j.fertnstert.2013.01.150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate cumulus cell (CC) expression profile modulation after different stimulation protocols. DESIGN CCs transcriptome variations were evaluated by microarray in patients undergoing different treatments for ovarian stimulation, namely, r-hLH + r-hFSH and hp-hMG, compared with a control group treated with r-hFSH. SETTING Healthy patients undergoing assisted reproduction protocols. PATIENT(S) Sixteen healthy women with regular cycles and tubal disease or unexplained infertility. INTERVENTION(S) Four patients received hp-hMG, four received r-hFSH + r-hLH, and eight received r-hFSH daily. Aspiration of the oocytes was performed 36 hours after hCG administration. Only samples derived from cumulus-oocyte complexes containing mature oocytes showing polar body were processed. MAIN OUTCOME MEASURE(S) Comparison of genes differentially expressed in both treatment groups with the use of a hierarchic clustering analysis. RESULT(S) Data clustering analysis allowed detection of four clusters containing genes differentially expressed in both treatment groups compared with control. Functional analysis of the affected transcripts revealed genes involved in oocyte development and maturation. CONCLUSION(S) r-hLH and hCG, though acting on the same receptor, produce a differential activation of intracellular pathways. It can be hypothesized that this effect depends on their different structures and specific binding affinity for the receptor.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Psychology, Humanities, and Territory Sciences, G. d'Annunzio University, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McCarthy PL, Paterno GD, Gillespie LL. Protein expression pattern of human MIER1 alpha, a novel estrogen receptor binding protein. J Mol Histol 2013; 44:469-79. [PMID: 23277184 DOI: 10.1007/s10735-012-9478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in a limited number of non-endocrine organs.
Collapse
Affiliation(s)
- Patti L McCarthy
- Terry Fox Cancer Research Labs, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | | |
Collapse
|
16
|
denDekker AD, Xu X, Vaughn MD, Puckett AH, Gardner LL, Lambring CJ, Deschenes L, Samuelson DJ. Rat Mcs1b is concordant to the genome-wide association-identified breast cancer risk locus at human 5q11.2 and MIER3 is a candidate cancer susceptibility gene. Cancer Res 2012; 72:6002-12. [PMID: 22993404 DOI: 10.1158/0008-5472.can-12-0748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Low-penetrance alleles associated with breast cancer risk have been identified in population-based studies. Most risk loci contain either no or multiple potential candidate genes. Rat mammary carcinoma susceptibility 1b (Mcs1b) is a quantitative trait locus on RN02 that confers decreased susceptibility when Copenhagen (COP)-resistant alleles are introgressed into a Wistar Furth (WF)-susceptible genome. Five WF.COP congenic lines containing COP RN02 segments were compared. One line developed an average of 3.4 ± 2.0 and 5.5 ± 3.6 mammary carcinomas per rat ± SD when females were Mcs1b-resistant homozygous and Mcs1b heterozygous, respectively. These phenotypes were significantly different from susceptible genotype littermates (7.8 ± 3.1 mean mammary carcinomas per rat ± SD, P = 0.0001 and P = 0.0413, respectively). All other congenic lines tested were susceptible. Thus, Mcs1b was narrowed to 1.8 Mb of RN02 between genetic markers ENSRNOSNP2740854 and g2UL2-27. Mammary gland-graft carcinoma susceptibility assays were used to determine that donor (P = 0.0019), but not recipient Mcs1b genotype (P = 0.9381), was associated with ectopic mammary carcinoma outcome. Rat Mcs1b contains sequence orthologous to human 5q11.2, a breast cancer susceptibility locus identified in multiple genome-wide association studies. Human/rat MAP3K1/Map3k1 and mesoderm induction early response (MIER; MIER3)/MIER3 are within these orthologous segments. We identified MIER3 as a candidate Mcs1b gene based on 4.5-fold higher mammary gland levels of MIER3 transcripts in susceptible compared with Mcs1b-resistant females. These data suggest that the human 5q11.2 breast cancer risk allele marked by rs889312 is mammary gland autonomous, and MIER3 is a candidate breast cancer susceptibility gene.
Collapse
Affiliation(s)
- Aaron D denDekker
- Center for Genetics and Molecular Medicine, Department of Biochemistry and Molecular Biology, and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells. PLoS One 2012; 7:e32499. [PMID: 22384264 PMCID: PMC3286477 DOI: 10.1371/journal.pone.0032499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
MIER1 was originally identified in a screen for novel fibroblast growth factor activated early response genes. The mier1 gene gives rise to multiple transcripts encoding protein isoforms that differ in their amino (N-) and carboxy (C-) termini. Much of the work to date has focused on the two C-terminal variants, MIER1α and β, both of which have been shown to function as transcriptional repressors. Our previous work revealed a dramatic shift in MIER1α subcellular localization from nuclear in normal breast tissue to cytoplasmic in invasive breast carcinoma, suggesting that loss of nuclear MIER1α may play a role in breast cancer development. In the present study, we investigated whether alternative splicing to include a cassette exon and produce an N–terminal variant of MIER1α affects its subcellular localization in MCF7 breast carcinoma cells. We demonstrate that this cassette exon, exon 3A, encodes a consensus leucine-rich nuclear export signal (NES). Inclusion of this exon in MIER1α to produce the MIER1-3Aα isoform altered its subcellular distribution in MCF7 cells from 81% nuclear to 2% nuclear and this change in localization was abrogated by mutation of critical leucines within the NES. Treatment with leptomycin B (LMB), an inhibitor of the nuclear export receptor CRM1, resulted in a significant increase in the percentage of cells with nuclear MIER1-3Aα, from 4% to 53%, demonstrating that cytoplasmic localization of this isoform was due to CRM1-dependent nuclear export. Inclusion of exon 3A in MIER1β to produce the N-terminal variant MIER1-3Aβ however had little effect on the nuclear targeting of this isoform. Our results demonstrate that alternative splicing to include exon 3A specifically affects the localization pattern of the α isoform.
Collapse
|
18
|
The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422:493-501. [PMID: 19555349 DOI: 10.1042/bj20090134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pygopus is a core component of the beta-catenin/TCF (T-cell factor) transcriptional activation complex required for the expression of canonical Wnt target genes. Recent evidence suggests that Pygopus could interpret histone methylation associated with target genes and it was shown to be required for histone acetylation. The involvement of a specific acetyltransferase, however, was not determined. In this report, we demonstrate that Pygopus can interact with the HAT (histone acetyltransferase) CBP [CREB (cAMP-responsive-element-binding protein)-binding protein]. The interaction is via the NHD (N-terminal homology domain) of Pygopus, which binds to two regions in the vicinity of the HAT domain of CBP. Transfected and endogenous hPygo2 (human Pygopus2) and CBP proteins co-immunoprecipitate in HEK-293 (human embryonic kidney 293) cells and both proteins co-localize in SW480 colorectal cancer cells. The interaction with CBP also enhances both DNA-tethered and TCF/LEF1 (lymphoid enhancing factor 1)-dependent transcriptional activity of Pygopus. Furthermore, immunoprecipitated Pygopus protein complexes displayed CBP-dependent histone acetyltransferase activity. Our data support a model in which the NHD region of Pygopus is required to augment TCF/beta-catenin-mediated transcriptional activation by a mechanism that includes both transcriptional activation and histone acetylation resulting from the recruitment of the CBP histone acetyltransferase.
Collapse
|