1
|
Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs Patrol Inflammasome Activation. J Mol Biol 2017; 430:153-173. [PMID: 29024695 DOI: 10.1016/j.jmb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.
Collapse
Affiliation(s)
- Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Matusiak M, Van Opdenbosch N, Lamkanfi M. CARD- and pyrin-only proteins regulating inflammasome activation and immunity. Immunol Rev 2016; 265:217-30. [PMID: 25879296 DOI: 10.1111/imr.12282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane-bound and intracellular immune receptors respond to microbial pathogens by initiating signaling cascades that result in production of inflammatory cytokines and antimicrobial factors. These host responses need to be tightly regulated to prevent tissue damage and other harmful consequences of excessive inflammation. CARD-only proteins (COPs) and Pyrin-only proteins (POPs) are human- and primate-specific dominant negative inhibitors that modulate inflammatory and innate immune responses. In addition, several poxviruses encode POPs that interfere with inflammatory and host defense responses. COPs and POPs modulate inflammatory signaling at several checkpoints by sequestering key components of the inflammasome and NF-κB signaling cascades, thus hampering downstream signal transduction. Here, we review and discuss current understanding of the evolutionary history and molecular mechanisms by which roles of host- and virus-encoded COPs and POPs may regulate inflammatory and immune responses. In addition, we address their (patho)physiological roles and highlight topics for further research.
Collapse
Affiliation(s)
- Magdalena Matusiak
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
3
|
Abstract
Inflammasomes are protein complexes that promote the maturation and release of pro-inflammatory cytokines and danger signals as well as pyroptosis in response to infections and cellular stress. Inflammasomes consist of a sensor, an adapter, and the effector caspase-1, which interact through homotypic interactions of caspase recruitment domains (CARDs) or PYRIN domains (PYDs). Hence, decoy proteins encoding only a CARD or PYD, COPs and POPs, respectively, are assumed to inhibit inflammasome assembly. Sensors encoding a PYD belong to the families of NOD-like receptors containing a PYD (NLRPs) or AIM2-like receptors (ALRs), which interact with the PYD- and CARD-containing adapter ASC through homotypic PYD interactions. Subsequently, ASC undergoes PYD-dependent oligomerization, which promotes CARD-mediated interactions between ASC and caspase-1, resulting in caspase-1 activation. POPs are suggested to interfere with the interaction between NLRPs/ALRs and ASC to prevent nucleation of ASC and therefore prevent an oligomeric platform for caspase-1 activation. Similarly, COPs are suggested to bind to the CARD of caspase-1 to prevent its recruitment to the oligomeric ASC platform and its activation. Alternatively, the adapter ASC may regulate inflammasome activity by expressing different isoforms, which are either capable or incapable of assembling an oligomeric ASC platform. The molecular mechanism of inflammasome assembly has only recently been elucidated, but the effects of most COPs and POPs on inflammasome assembly have not been investigated. Here, we discuss our model of COP- and POP-mediated inflammasome regulation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
4
|
Dugan J, Griffiths E, Snow P, Rosenzweig H, Lee E, Brown B, Carr DW, Rose C, Rosenbaum J, Davey MP. Blau syndrome-associated Nod2 mutation alters expression of full-length NOD2 and limits responses to muramyl dipeptide in knock-in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:349-57. [PMID: 25429073 DOI: 10.4049/jimmunol.1402330] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The biochemical mechanism by which mutations in nucleotide-binding oligomerization domain containing 2 (NOD2) cause Blau syndrome is unknown. Several studies have examined the effect of mutations associated with Blau syndrome in vitro, but none has looked at the implication of the mutations in vivo. To test the hypothesis that mutated NOD2 causes alterations in signaling pathways downstream of NOD2, we created a Nod2 knock-in mouse carrying the most common mutation seen in Blau syndrome, R314Q (corresponding to R334Q in humans). The endogenous regulatory elements of mouse Nod2 were unaltered. R314Q mice showed reduced cytokine production in response to i.p. and intravitreal muramyl dipeptide (MDP). Macrophages from R314Q mice showed reduced NF-κB and IL-6 responses, blunted phosphorylation of MAPKs, and deficient ubiquitination of receptor-interacting protein 2 in response to MDP. R314Q mice expressed a truncated 80-kDa form of NOD2 that was most likely generated by a posttranslational event because there was no evidence for a stop codon or alternative splicing event. Human macrophages from two patients with Blau syndrome also showed a reduction of both cytokine production and phosphorylation of p38 in response to MDP, indicating that both R314Q mice and cells from patients with Blau syndrome show reduced responses to MDP. These data indicate that the R314Q mutation when studied with the Nod2 endogenous regulatory elements left intact is associated with marked structural and biochemical changes that are significantly different from those observed from studies of the mutation using overexpression, transient transfection systems.
Collapse
Affiliation(s)
- Jae Dugan
- Portland Veterans Affairs Medical Center, Portland, OR 97239; Department of Medicine, Oregon Health and Sciences University, Portland, OR 97239
| | - Eric Griffiths
- Portland Veterans Affairs Medical Center, Portland, OR 97239
| | - Paige Snow
- Portland Veterans Affairs Medical Center, Portland, OR 97239
| | - Holly Rosenzweig
- Portland Veterans Affairs Medical Center, Portland, OR 97239; Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR 97239; Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239
| | - Ellen Lee
- Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR 97239
| | - Brieanna Brown
- Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR 97239
| | - Daniel W Carr
- Portland Veterans Affairs Medical Center, Portland, OR 97239; Department of Medicine, Oregon Health and Sciences University, Portland, OR 97239
| | - Carlos Rose
- Division of Rheumatology, DuPont Hospital for Children, Wilmington, DE 19803; and
| | - James Rosenbaum
- Department of Medicine, Oregon Health and Sciences University, Portland, OR 97239; Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR 97239; Legacy Devers Eye Institute, Portland, OR 97210
| | - Michael P Davey
- Portland Veterans Affairs Medical Center, Portland, OR 97239; Department of Medicine, Oregon Health and Sciences University, Portland, OR 97239; Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239;
| |
Collapse
|
5
|
Barbé F, Douglas T, Saleh M. Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev 2014; 25:681-97. [PMID: 25070125 DOI: 10.1016/j.cytogfr.2014.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/27/2022]
Abstract
The innate immune system is composed of a wide repertoire of conserved pattern recognition receptors (PRRs) able to trigger inflammation and host defense mechanisms in response to endogenous or exogenous pathogenic insults. Among these, nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular sentinels of cytosolic sanctity capable of orchestrating innate immunity and inflammatory responses following the perception of noxious signals within the cell. In this review, we elaborate on recent advances in the signaling mechanisms of NLRs, operating within inflammasomes or through alternative inflammatory pathways, and discuss the spectrum of their effector functions in innate immunity. We describe the progressive characterization of each NLR with associated controversies and cutting edge discoveries.
Collapse
Affiliation(s)
- François Barbé
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Todd Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada; Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
6
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Staiger D, Brown JWS. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013. [PMID: 24179132 DOI: 10.1105/tcp.113.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
| | | |
Collapse
|
8
|
Staiger D, Brown JW. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013; 25:3640-56. [PMID: 24179132 PMCID: PMC3877812 DOI: 10.1105/tpc.113.113803] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, D33615 Bielefeld, Germany
| | - John W.S. Brown
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Address correspondence to
| |
Collapse
|
9
|
Billmann-Born S, Lipinski S, Böck J, Till A, Rosenstiel P, Schreiber S. The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 2010; 90:593-602. [PMID: 21146253 DOI: 10.1016/j.ejcb.2010.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/07/2023] Open
Abstract
Several coding variants of NOD2 and ATG16L1 are associated with increased risk of Crohn disease (CD). NOD2, a cytosolic receptor of the innate immune system activates pro-inflammatory signalling cascades upon recognition of bacterial muramyl dipeptide, but seems also to be involved in antiviral and anti-parasitic defence programs. The CD associated variant L1007fsinsC leads to impaired pro-inflammatory signalling and diminished bacterial clearance. ATG16L1 is a protein essential for autophagosome formation at the phagophore assembly site. The CD associated T300A variant is located in the c-terminal WD40 domain, whose function is still unknown. Basal autophagy is not affected by the T300A variant, but antibacterial autophagy (xenophagy) is impaired, a finding that relates ATG16L1 as well as NOD2 to pathogen defence. Notably, combination of disease-associated alleles of ATG16L1 and NOD2/CARD15 leads to synergistically increased susceptibility for CD, indicating a possible crosstalk between NOD2- and ATG16L1-mediated processes in the pathogenesis of CD. This review surveys current research results and discusses the functional models of potential interplay between NLR-pathways and xenophagy. Interaction between pathways is discussed in the context of reactive oxygen species (ROS), membrane co-localisation, antigen processing and implications of disturbed Paneth cell vesicle export. These effects on pathogen response might imbalance the intestinal barrier epithelia towards chronic inflammation and promote development of Crohn disease. Further elucidation of NOD2/ATG16L1 interplay in xenophagy is relevant for understanding the aetiology of chronic intestinal inflammation and host-microbe interaction in general and could lead to principal new insights to xenophagy induction.
Collapse
Affiliation(s)
- Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | |
Collapse
|