Joukhadar R, Jighly A. Microsatellites grant more stable flanking genes.
BMC Res Notes 2012;
5:556. [PMID:
23035963 PMCID:
PMC3515467 DOI:
10.1186/1756-0500-5-556]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022] Open
Abstract
Background
Microsatellites, or simple sequence repeats (SSRs), are DNA sequences that include tandem copies of specific sequences no longer than six bases. SSRs are ubiquitous in all genomes and highly mutable.
Presentation of the hypothesis
Results from previous studies suggest that flanking regions of SSR are exhibit high stability in a wide range of organisms. We hypothesized that the SSRs ability to discard weak DNA polymerases could be responsible for this unusual stability. . When the weak polymerases are being decayed over SSRs, the flanking sequences would have higher opportunity to be replicated by more stable DNA polymerases. We present evidence of the molecular basis of our hypothesis.
Testing the hypothesis
The hypothesis could be tested by examining the activity of DNA polymerase during and after a number of PCRs. The PCR reactions should be run with the same SSR locus possessing differences in the SSR length. The hypothesis could also be tested by comparing the mutational rate of a transferred gene between two transformations. The first one has a naked T-DNA (transferred DNA), while the second one has the same T-DNA flanked with two SSRs.
Implications of the hypothesis
In any transformation experiment, flanking the T-DNA fragment with SSR sequences would result in more stably transferred genes. This process would decrease the unpredictable risks that may occur because of the mutational pressure on this foreign segment.
Collapse