1
|
Fahad AS, Madan B, DeKosky BJ. Bioinformatic Analysis of Natively Paired VH:VL Antibody Repertoires for Antibody Discovery. Methods Mol Biol 2023; 2552:447-463. [PMID: 36346608 DOI: 10.1007/978-1-0716-2609-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation DNA sequencing (NGS) of human antibody repertoires has been extensively implemented to discover novel antibody drugs, to analyze B-cell developmental features, and to investigate antibody responses to infectious diseases and vaccination. Because the antibody repertoire encoded by human B cells is highly diverse, NGS analyses of antibody genes have provided a new window into understanding antibody responses for basic immunology, biopharmaceutical drug discovery, and immunotherapy. However, many antibody discovery protocols analyze the heavy and light chains separately due to the short-read nature of most NGS technologies, whereas paired heavy and light chain data are required for complete antibody characterization. Here, we describe a computational workflow to process millions of paired antibody heavy and light chain DNA sequence reads using the Illumina MiSeq 2x300 NGS platform. In this workflow, we describe raw NGS read processing and initial quality filtering, the annotation and assembly of antibody clonotypes relating to paired heavy and light chain antibody lineages, and the generation of complete heavy+light consensus sequences for the downstream cloning and expression of human antibody proteins.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
2
|
Adaptive immune receptor repertoires, an overview of this exciting field. Immunol Lett 2020; 221:49-55. [PMID: 32113899 DOI: 10.1016/j.imlet.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Collapse
|
3
|
Petrova VN, Muir L, McKay PF, Vassiliou GS, Smith KGC, Lyons PA, Russell CA, Anderson CA, Kellam P, Bashford-Rogers RJM. Combined Influence of B-Cell Receptor Rearrangement and Somatic Hypermutation on B-Cell Class-Switch Fate in Health and in Chronic Lymphocytic Leukemia. Front Immunol 2018; 9:1784. [PMID: 30147686 PMCID: PMC6095981 DOI: 10.3389/fimmu.2018.01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/19/2018] [Indexed: 01/21/2023] Open
Abstract
A diverse B-cell receptor (BCR) repertoire is required to bind a wide range of antigens. BCRs are generated through genetic recombination and can be diversified through somatic hypermutation (SHM) or class-switch recombination (CSR). Patterns of repertoire diversity can vary substantially between different health conditions. We use isotype-resolved BCR sequencing to compare B-cell evolution and class-switch fate in healthy individuals and in patients with chronic lymphocytic leukemia (CLL). We show that the patterns of SHM and CSR in B-cells from healthy individuals are distinct from CLL. We identify distinct properties of clonal expansion that lead to the generation of antibodies of different classes in healthy, malignant, and non-malignant CLL BCR repertoires. We further demonstrate that BCR diversity is affected by relationships between antibody variable and constant regions leading to isotype-specific signatures of variable gene usage. This study provides powerful insights into the mechanisms underlying the evolution of the adaptive immune responses in health and their aberration during disease.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Gene Rearrangement, B-Lymphocyte
- Humans
- Immunoglobulin Class Switching/genetics
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Multigene Family
- Receptors, Antigen, B-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
Collapse
Affiliation(s)
| | - Luke Muir
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Paul F. McKay
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | | - Paul A. Lyons
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Colin A. Russell
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol 2018; 34:441-457. [PMID: 29484527 DOI: 10.1007/s10565-018-9426-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.
Collapse
Affiliation(s)
- Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | | |
Collapse
|
5
|
Kono N, Sun L, Toh H, Shimizu T, Xue H, Numata O, Ato M, Ohnishi K, Itamura S. Deciphering antigen-responding antibody repertoires by using next-generation sequencing and confirming them through antibody-gene synthesis. Biochem Biophys Res Commun 2017; 487:300-306. [PMID: 28412367 DOI: 10.1016/j.bbrc.2017.04.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Vast diversity and high specificity of antigen recognition by antibodies are hallmarks of the acquired immune system. Although the molecular mechanisms that yield the extremely large antibody repertoires are precisely understood, comprehensive description of the global antibody repertoire generated in individual bodies has been hindered by the lack of powerful measures. To obtain holistic understanding of the antibody-repertoire space, we used next-generation sequencing (NGS) to analyze the deep profiles of naive and antigen-responding repertoires of the IgM, IgG1, and IgG2c classes formed in individual mice. The overall landscapes of naive IgM repertoires were almost the same for each mouse, whereas those of IgG1 and IgG2c differed considerably among naive individuals. Next, we immunized mice with a model antigen, nitrophenol (NP)-hapten linked to chicken γ-globulin (CGG) carrier, and compared the antigen-responding repertoires in individual mice. To extract the complete antigen response, we developed an intelligible method for detecting common components of antigen-responding repertoires. The major responding antibodies were IGHV1-72/IGHD1-1/IGHJ2 for NP-hapten and IGHV9-3/IGHD3-1/IGHJ2 for CGG-carrier protein. The antigen-binding specificities of the identified antibodies were confirmed through ELISA after antibody-gene synthesis and expression of the corresponding NGS reads. Thus, we deciphered antigen-responding antibody repertoires by inclusively analyzing the antibody-repertoire space generated in individual bodies by using NGS, which avoided inadvertent omission of key antibody repertoires.
Collapse
Affiliation(s)
- Naoko Kono
- Center for Influenza Virus Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Lin Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Toh
- School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Hanbing Xue
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu Numata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Shigeyuki Itamura
- Center for Influenza Virus Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
6
|
Hershberg U, Luning Prak ET. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0239. [PMID: 26194753 PMCID: PMC4528416 DOI: 10.1098/rstb.2014.0239] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clones are the fundamental building blocks of immune repertoires. The number of different clones relates to the diversity of the repertoire, whereas their size and sequence diversity are linked to selective pressures. Selective pressures act both between clones and within different sequence variants of a clone. Understanding how clonal selection shapes the immune repertoire is one of the most basic questions in all of immunology. But how are individual clones defined? Here we discuss different approaches for defining clones, starting with how antibodies are diversified during different stages of B cell development. Next, we discuss how clones are defined using different experimental methods. We focus on high-throughput sequencing datasets, and the computational challenges and opportunities that these data have for mining the antibody repertoire landscape. We discuss methods that visualize sequence variants within the same clone and allow us to consider collections of shared mutations to determine which sequences share a common ancestry. Finally, we comment on features of frequently encountered expanded B cell clones that may be of particular interest in the setting of autoimmunity and other chronic conditions.
Collapse
Affiliation(s)
- Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA Department of Immunology and Microbiology, College of Medicine, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 405B Stellar Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M, Abounasr A, Hauser SL, von Büdingen HC. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2015; 6:248ra106. [PMID: 25100740 DOI: 10.1126/scitranslmed.3008930] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
Collapse
Affiliation(s)
| | | | - Tracy C Kuo
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Marina Sirota
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Shengzhi Wang
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Steven J Pitts
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Purnima D Sundar
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Dilduz Telman
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Lora Z Zhao
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Mia Derstine
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Aya Abounasr
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | | | | |
Collapse
|
8
|
Chen W, Gong R, Ying T, Prabakaran P, Zhu Z, Feng Y, Dimitrov DS. Discovery of novel candidate therapeutics and diagnostics based on engineered human antibody domains. Curr Drug Discov Technol 2014; 11:28-40. [PMID: 23863097 DOI: 10.2174/15701638113109990032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
The smallest independently folded antibody fragments, the domains, are emerging as promising scaffolds for candidate therapeutics and diagnostics that bind specifically targets of interest. The discovery of such binders is based on several technologies including structure-based design and generation of libraries of mutants displayed on phage or yeast, next-generation sequencing for diversity analysis, panning and screening of the libraries, affinity maturation of selected binders, and their expression, purification, and characterization for specific binding, function, and aggregation propensity. In this review, we describe these technologies as applied for the generation of engineered antibody domains (eAds), especially those derived from the human immunoglobulin heavy chain variable region (VH) and the second domain of IgG1 heavy chain constant region (CH2) as potential candidate therapeutics and diagnostics, and discuss examples of eAds against HIV-1 and cancer-related proteins.
Collapse
|
9
|
Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. FRONTIERS IN PLANT SCIENCE 2014; 5:216. [PMID: 24904612 PMCID: PMC4033234 DOI: 10.3389/fpls.2014.00216] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, Faculty of Agriculture, University of BonnBonn, Germany
| |
Collapse
|
10
|
The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 2014; 32:158-68. [PMID: 24441474 PMCID: PMC4113560 DOI: 10.1038/nbt.2782] [Citation(s) in RCA: 483] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/04/2013] [Indexed: 12/16/2022]
Abstract
Georgiou and colleagues discuss rapidly evolving methods for high-throughput sequencing of the antibody repertoire, and how the resulting data may be applied to answer basic and translational research questions. Efforts to determine the antibody repertoire encoded by B cells in the blood or lymphoid organs using high-throughput DNA sequencing technologies have been advancing at an extremely rapid pace and are transforming our understanding of humoral immune responses. Information gained from high-throughput DNA sequencing of immunoglobulin genes (Ig-seq) can be applied to detect B-cell malignancies with high sensitivity, to discover antibodies specific for antigens of interest, to guide vaccine development and to understand autoimmunity. Rapid progress in the development of experimental protocols and informatics analysis tools is helping to reduce sequencing artifacts, to achieve more precise quantification of clonal diversity and to extract the most pertinent biological information. That said, broader application of Ig-seq, especially in clinical settings, will require the development of a standardized experimental design framework that will enable the sharing and meta-analysis of sequencing data generated by different laboratories.
Collapse
|
11
|
Niklas N, Pröll J, Danzer M, Stabentheiner S, Hofer K, Gabriel C. Routine performance and errors of 454 HLA exon sequencing in diagnostics. BMC Bioinformatics 2013; 14:176. [PMID: 23731822 PMCID: PMC3679934 DOI: 10.1186/1471-2105-14-176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/30/2013] [Indexed: 11/25/2022] Open
Abstract
Background Next-generation sequencing (NGS) has changed genomics significantly. More and more applications strive for sequencing with different platforms. Now, in 2012, after a decade of development and evolution, NGS has been accepted for a variety of research fields. Determination of sequencing errors is essential in order to follow next-generation sequencing beyond research use only. This study describes the overall 454 system performance of using multiple GS Junior runs with an in-house established and validated diagnostic assay for human leukocyte antigen (HLA) exon sequencing. Based on this data, we extracted, evaluated and characterized errors and variants of 60 HLA loci per run with respect to their adjacencies. Results We determined an overall error rate of 0.18% in a total of 118,484,408 bases. 31.3% of all reads analyzed (n=349,503) contain one or more errors. The largest group are deletions that account for 50% of the errors. Incorrect bases are not distributed equally along sequences and tend to be more frequent at sequence ends. Certain sequence positions in the middle or at the beginning of the read accumulate errors. Typically, the corresponding quality score at the actual error position is lower than the adjacent scores. Conclusions Here we present the first error assessment in a human next-generation sequencing diagnostics assay in an amplicon sequencing approach. Improvements of sequence quality and error rate that have been made over the years are evident and it is shown that both have now reached a level where diagnostic applications become feasible. Our presented data are better than previously published error rates and we can confirm and quantify the often described relation of homopolymers and errors. Nevertheless, a certain depth of coverage is needed, in particular with challenging areas of the sequencing target. Furthermore, the usage of error correcting tools is not essential but might contribute towards the capacity and efficiency of a sequencing run.
Collapse
Affiliation(s)
- Norbert Niklas
- Red Cross Transfusion Service for Upper Austria, Krankenhausstraße 7, 4017 Linz, Austria.
| | | | | | | | | | | |
Collapse
|
12
|
Zhu Z, Prabakaran P, Chen W, Broder CC, Gong R, Dimitrov DS. Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1. Virol Sin 2013; 28:71-80. [PMID: 23575729 PMCID: PMC7090799 DOI: 10.1007/s12250-013-3313-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023] Open
Abstract
More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.
Collapse
Affiliation(s)
- Zhongyu Zhu
- Protein Interactions Group, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proc Natl Acad Sci U S A 2013; 110:6470-5. [PMID: 23536288 DOI: 10.1073/pnas.1219320110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.
Collapse
|
14
|
Zhu J, O'Dell S, Ofek G, Pancera M, Wu X, Zhang B, Zhang Z, Mullikin JC, Simek M, Burton DR, Koff WC, Shapiro L, Mascola JR, Kwong PD. Somatic Populations of PGT135-137 HIV-1-Neutralizing Antibodies Identified by 454 Pyrosequencing and Bioinformatics. Front Microbiol 2012; 3:315. [PMID: 23024643 PMCID: PMC3441199 DOI: 10.3389/fmicb.2012.00315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/13/2012] [Indexed: 01/28/2023] Open
Abstract
Select HIV-1-infected individuals develop sera capable of neutralizing diverse viral strains. The molecular basis of this neutralization is currently being deciphered by the isolation of HIV-1-neutralizing antibodies. In one infected donor, three neutralizing antibodies, PGT135–137, were identified by assessment of neutralization from individually sorted B cells and found to recognize an epitope containing an N-linked glycan at residue 332 on HIV-1 gp120. Here we use next-generation sequencing and bioinformatics methods to interrogate the B cell record of this donor to gain a more complete understanding of the humoral immune response. PGT135–137-gene family specific primers were used to amplify heavy-chain and light-chain variable-domain sequences. Pyrosequencing produced 141,298 heavy-chain sequences of IGHV4-39 origin and 87,229 light-chain sequences of IGKV3-15 origin. A number of heavy and light-chain sequences of ∼90% identity to PGT137, several to PGT136, and none of high identity to PGT135 were identified. After expansion of these sequences to include close phylogenetic relatives, a total of 202 heavy-chain sequences and 72 light-chain sequences were identified. These sequences were clustered into populations of 95% identity comprising 15 for heavy chain and 10 for light chain, and a select sequence from each population was synthesized and reconstituted with a PGT137-partner chain. Reconstituted antibodies showed varied neutralization phenotypes for HIV-1 clade A and D isolates. Sequence diversity of the antibody population represented by these tested sequences was notably higher than observed with a 454 pyrosequencing-control analysis on 10 antibodies of defined sequence, suggesting that this diversity results primarily from somatic maturation. Our results thus provide an example of how pathogens like HIV-1 are opposed by a varied humoral immune response, derived from intrinsic mechanisms of antibody development, and embodied by somatic populations of diverse antibodies.
Collapse
Affiliation(s)
- Jiang Zhu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Prabakaran P, Zhu Z, Chen W, Gong R, Feng Y, Streaker E, Dimitrov DS. Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing. Front Microbiol 2012; 3:277. [PMID: 22876240 PMCID: PMC3410596 DOI: 10.3389/fmicb.2012.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/17/2012] [Indexed: 11/14/2022] Open
Abstract
Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS coronavirus (SARS CoV), and Hendra and Nipah viruses (henipaviruses). Although broadly neutralizing antibodies (bnAbs) against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS CoV receptor-binding domain (RBD), and soluble G proteins (sG) of henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity, and a lower extent of somatic mutation. In this study, we identified antibody maturation intermediates that are related to bnAbs against the HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD, USA
| | | | | | | | | | | | | |
Collapse
|