1
|
Glaser S, Kretzmer H, Kolassa I, Schlesner M, Fischer A, Fenske I, Siebert R, Ammerpohl O. Navigating Illumina DNA methylation data: biology versus technical artefacts. NAR Genom Bioinform 2024; 6:lqae181. [PMID: 39703427 PMCID: PMC11655293 DOI: 10.1093/nargab/lqae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Illumina-based BeadChip arrays have revolutionized genome-wide DNA methylation profiling, pushing it into diagnostics. However, comprehensive quality assessment remains challenging within a wide range of available tissue materials and sample preparation methods. This study tackles two critical issues: differentiating between biological effects and technical artefacts in suboptimal quality samples and the impact of the first sample on the Illumina-like normalization algorithm. We introduce three quality control scores based on global DNA methylation distribution (DB-Score), bin distance from copy number variation analysis (BIN-Score) and consistently methylated CpGs (CM-Score) that rely on biological features rather than internal array controls. These scores, designed to be adjustable for different analysis tools and sample cohort characteristics, were explored and benchmarked across independent cohorts. Additionally, we reveal deviations in beta values caused by different sample rankings with the Illumina-like normalization algorithm, verified these with whole-genome methylation sequencing data and showed effects on differential DNA methylation analysis. Our findings underscore the necessity of consistently utilizing a pre-defined normalization sample within the ranking process to boost reproducibility of the Illumina-like normalization algorithm. Overall, our study delivers valuable insights, practical recommendations and R functions designed to enhance reproducibility and quality assurance of DNA methylation analysis, particularly for challenging sample types.
Collapse
Affiliation(s)
- Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, Berlin 14195, Germany
- Digital Health Cluster, Hasso Plattner Institute for Digital Engineering, Digitial Engineering Faculty, University of Potdsdam, Prof.-Dr.-Helmert-Str. 2-3, Potsdam 14482, Germany
| | - Iris Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Alter Postweg 101, Augsburg 86159, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Isabell Fenske
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
2
|
Chao CR, Slezak J, Siegmund K, Cannavale K, Shu Y, Chien GW, Chen X, Shi F, Song N, Van Den Eeden SK, Huang J. Genome-wide methylation profiling of diagnostic tumor specimens identified DNA methylation markers associated with metastasis among men with untreated localized prostate cancer. Cancer Med 2023; 12:18837-18849. [PMID: 37694549 PMCID: PMC10557825 DOI: 10.1002/cam4.6507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.
Collapse
Affiliation(s)
- Chun R. Chao
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
- Department of Health Systems ScienceKaiser Permanente Bernard J Tyson School of MedicinePasadenaCaliforniaUSA
| | - Jeff Slezak
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Kimberly Siegmund
- Department of Population and Public Health Sciences, USC Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimberly Cannavale
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Yu‐Hsiang Shu
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Gary W. Chien
- Department of Urology, Los Angeles Medical CenterKaiser Permanente Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xu‐Feng Chen
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Feng Shi
- Department of Pathology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Nan Song
- Department of Urology Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | | | - Jiaoti Huang
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
3
|
Steenaard RV, Feelders RA, Dogan F, van Koetsveld PM, Creemers SG, Ettaieb MHT, van Kemenade FJ, Haak HR, Hofland LJ. The Role of the IGF2 Methylation Score in Diagnosing Adrenocortical Tumors with Unclear Malignant Potential-Feasibility of Formalin-Fixed Paraffin-Embedded Tissue. Biomedicines 2023; 11:2013. [PMID: 37509652 PMCID: PMC10377429 DOI: 10.3390/biomedicines11072013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The differentiation between benign and malignant adrenocortical tumors based on pathological assessment can be difficult. We present a series of 17 patients with unclear malignant tumors, of whom six had recurrent or metastatic disease. The assessment of the methylation pattern of insulin-like growth factor 2 (IGF2) regulatory regions in fresh frozen material has shown to be valuable in determining the malignancy of adrenocortical tumors, although this has not been elaborately tested in unclear malignant tumors. Since fresh frozen tissue was only available in six of the patients, we determined the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue for this method. We isolated DNA from FFPE tissue and matched the fresh frozen tissue of three patients with adrenocortical carcinoma. Methylation patterns of IGF2 regulatory regions were determined by pyrosequencing using different amounts of bisulfite-converted DNA (5 ng, 20 ng, 40 ng). Compared to fresh frozen tissue, FFPE tissue had a higher failure rate (fresh frozen 0%; FFPE 18.5%) and poor-to-moderate replicability (fresh frozen rho = 0.89-0.99, median variation 1.6%; FFPE rho = -0.09-0.85, median variation 7.7%). There was only a poor-to-moderate correlation between results from fresh frozen and FFPE tissue (rho = -0.28-0.70, median variation 13.2%). In conclusion, FFPE tissue is not suitable for determining the IGF2 methylation score in patients with an unclear malignant adrenocortical tumor using the currently used method. We, therefore, recommend fresh frozen storage of resection material for diagnostic and biobank purposes.
Collapse
Affiliation(s)
- Rebecca V Steenaard
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Internal Medicine, Máxima MC, 5504 DB Veldhoven, The Netherlands
- CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sara G Creemers
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | | | | | - Harm R Haak
- Department of Internal Medicine, Máxima MC, 5504 DB Veldhoven, The Netherlands
- CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht University, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
4
|
Jasmine F, Aschebrook-Kilfoy B, Rahman MM, Zaagman G, Grogan RH, Kamal M, Ahsan H, Kibriya MG. Association of DNA Promoter Methylation and BRAF Mutation in Thyroid Cancer. Curr Oncol 2023; 30:2978-2996. [PMID: 36975440 PMCID: PMC10047424 DOI: 10.3390/curroncol30030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The BRAF V600E mutation and DNA promoter methylation play important roles in the pathogenesis of thyroid cancer (TC). However, the association of these genetic and epigenetic alterations is not clear. In this study, using paired tumor and surrounding normal tissue from the same patients, on a genome-wide scale we tried to identify (a) any association between BRAF mutation and DNA promoter methylation, and (b) if the molecular findings may provide a basis for therapeutic intervention. We included 40 patients with TC (female = 28, male = 12) without distant metastasis. BRAF mutation was present in 18 cases. We identified groups of differentially methylated loci (DML) that are found in (a) both BRAF mutant and wild type, (b) only in BRAF mutant tumors, and (c) only in BRAF wild type. BRAF mutation-specific promoter loci were more frequently hypomethylated, whereas BRAF wild-type-specific loci were more frequently hypermethylated. Common DML were enriched in cancer-related pathways, including the mismatch repair pathway and Wnt-signaling pathway. Wild-type-specific DML were enriched in RAS signaling. Methylation status of checkpoint signaling genes, as well as the T-cell inflamed genes, indicated an opportunity for the potential use of PDL1 inhibitors in BRAF mutant TC. Our study shows an association between BRAF mutation and methylation in TC that may have biological significance.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Mohammad M. Rahman
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Garrett Zaagman
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Raymon H. Grogan
- Department of Surgery, Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Mohammed Kamal
- Department of Pathology, The Laboratory, Dhaka 1205, Bangladesh
| | - Habibul Ahsan
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Kravitz A, Tyler R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Successful restoration of archived ovine formalin fixed paraffin-embedded tissue DNA and single nucleotide polymorphism analysis. Vet Res Commun 2023; 47:131-139. [PMID: 35618986 PMCID: PMC9873697 DOI: 10.1007/s11259-022-09937-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023]
Abstract
Archived formalin fixed paraffin-embedded (FFPE) tissues are powerful tools in medicine, capable of harboring diagnostic and genetic answers to challenging clinical questions. Successful utilization of DNA derived from FFPE samples is dependent upon repairing DNA damage generated from the fixation process. Methods to repair FFPE DNA have been successful in human medicine for a variety of research and clinical applications, yet remain underutilized in veterinary medicine. Despite the available technology, our study is the first to evaluate the repair of FFPE derived DNA from veterinary species for single-nucleotide polymorphism (SNP) analysis using the Illumina OvineSNP50 BeadChip and Illumina FFPE QC and DNA Restore kit. To accomplish this, 48 ovine FFPE samples were run using the Illumina OvineSNP50 BeadChip with and without restoration. Compared to pre-restore data, we found increased sample call rates, SNP call frequency, and assay metrics for all samples post-restoration. Further, we utilized four sheep with available parallel fresh DNA and FFPE DNA to compare assay metrics and genotype calls between the two starting sample types. Although fresh samples generated increased call rates, we found 99% concordance in allele calls between restored FFPE and fresh DNA for all four samples. Our results indicate successful restoration and genotyping of ovine FFPE samples using this technology, with potential for utilization in other veterinary species.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - B. Murali Manohar
- Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, 600051 Tamil Nadu India
| | - B. Samuel Masilamoni Ronald
- Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, 600051 Tamil Nadu India
| | - Michael T. Collins
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
6
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
7
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Mooi JK, Luk IY, Mariadason JM. Cell Line Models of Molecular Subtypes of Colorectal Cancer. Methods Mol Biol 2019; 1765:3-26. [PMID: 29589298 DOI: 10.1007/978-1-4939-7765-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a genetically diverse disease necessitating the need for well-characterized and reproducible models to enable its accurate investigation. Recent genomic analyses have confirmed that CRC cell lines accurately retain the key genetic alterations and represent the major molecular subtypes of primary CRC, underscoring their value as powerful preclinical models. In this chapter we detail the important issues to consider when using CRC cell lines, the techniques used for their appropriate molecular classification, and the methods by which they are cultured in vitro and as subcutaneous xenografts in immune-compromised mice. A panel of commonly available CRC cell lines that have been characterized for key molecular subtypes is also provided as a resource for investigators to select appropriate models to address specific research questions.
Collapse
Affiliation(s)
- Jennifer K Mooi
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Assessment of concordance between fresh-frozen and formalin-fixed paraffin embedded tumor DNA methylation using a targeted sequencing approach. Oncotarget 2018; 8:48126-48137. [PMID: 28611295 PMCID: PMC5564631 DOI: 10.18632/oncotarget.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/03/2017] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is altered in many types of disease, including metastatic colorectal cancer. However, the methylome has not yet been fully described in archival formalin-fixed paraffin embedded (FFPE) samples in the context of matched fresh-frozen (FF) tumor material at base-pair resolution using a targeted approach. Using next-generation sequencing, we investigated three pairs of matched FFPE and FF samples to determine the extent of their similarity. We identified a ‘bowing’ pattern specific to FFPE samples categorized by a lower CG proportion at the start of sequence reads. We have found no evidence that this affected methylation calling, nor concordance of results. We also found no significant increase in deamination, measured by C>T transitions, previously considered a result of crosslinking DNA by formalin fixation and a barrier to the use of FFPE in methylation studies. The methods used in this study have shown sensitivity of between 60-70% based on positions also methylated in colorectal cancer cell lines. We demonstrate that FFPE material is a useful source of tumor material for methylation studies using targeted sequencing.
Collapse
|
10
|
Espinal AC, Wang D, Yan L, Liu S, Tang L, Hu Q, Morrison CD, Ambrosone CB, Higgins MJ, Sucheston-Campbell LE. A methodological study of genome-wide DNA methylation analyses using matched archival formalin-fixed paraffin embedded and fresh frozen breast tumors. Oncotarget 2017; 8:14821-14829. [PMID: 28118602 PMCID: PMC5362446 DOI: 10.18632/oncotarget.14739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022] Open
Abstract
Background DNA from archival formalin-fixed and paraffin embedded (FFPE) tissue is an invaluable resource for genome-wide methylation studies although concerns about poor quality may limit its use. In this study, we compared DNA methylation profiles of breast tumors using DNA from fresh-frozen (FF) tissues and three types of matched FFPE samples. Results For 9/10 patients, correlation and unsupervised clustering analysis revealed that the FF and FFPE samples were consistently correlated with each other and clustered into distinct subgroups. Greater than 84% of the top 100 loci previously shown to differentiate ER+ and ER– tumors in FF tissues were also FFPE DML. Weighted Correlation Gene Network Analyses (WCGNA) grouped the DML loci into 16 modules in FF tissue, with ~85% of the module membership preserved across tissue types. Materials and Methods Restored FFPE and matched FF samples were profiled using the Illumina Infinium HumanMethylation450K platform. Methylation levels (β-values) across all loci and the top 100 loci previously shown to differentiate tumors by estrogen receptor status (ER+ or ER−) in a larger FF study, were compared between matched FF and FFPE samples using Pearson's correlation, hierarchical clustering and WCGNA. Positive predictive values and sensitivity levels for detecting differentially methylated loci (DML) in FF samples were calculated in an independent FFPE cohort. Conclusions FFPE breast tumors samples show lower overall detection of DMLs versus FF, however FFPE and FF DMLs compare favorably. These results support the emerging consensus that the 450K platform can be employed to investigate epigenetics in large sets of archival FFPE tissues.
Collapse
Affiliation(s)
- Allyson C Espinal
- Department of Molecular and Cell Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dan Wang
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Carl D Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Michael J Higgins
- Department of Molecular and Cell Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N. Comparison of genome‐wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 2017; 233:3968-3981. [DOI: 10.1002/jcp.26176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Narges Soozangar
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad R. Sadeghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Farhad Jeddi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Mohammad H. Somi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Department of Biochemistry, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
12
|
Ludgate JL, Wright J, Stockwell PA, Morison IM, Eccles MR, Chatterjee A. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA. BMC Med Genomics 2017; 10:54. [PMID: 28859641 PMCID: PMC5580311 DOI: 10.1186/s12920-017-0290-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Methods Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. Results The main features and advantages of this protocol are:An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing.
Conclusions We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue. Electronic supplementary material The online version of this article (10.1186/s12920-017-0290-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - James Wright
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.,School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9054, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
13
|
Min J, Choi B, Han TS, Lee HJ, Kong SH, Suh YS, Kim TH, Choe HN, Kim WH, Hur K, Yang HK. Methylation Levels of LINE-1 As a Useful Marker for Venous Invasion in Both FFPE and Frozen Tumor Tissues of Gastric Cancer. Mol Cells 2017; 40:346-354. [PMID: 28535662 PMCID: PMC5463043 DOI: 10.14348/molcells.2017.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) is a retrotransposon that contains a CpG island in its 5'-untranslated region. The CpG island of LINE-1 is often heavily methylated in normal somatic cells, which is associated with poor prognosis in various cancers. DNA methylation can differ between formalin-fixed paraffin-embedded (FFPE) and frozen tissues. Therefore, this study aimed to compare the LINE-1 methylation status between the two tissue-storage conditions in gastric cancer (GC) clinical samples and to evaluate whether LINE-1 can be used as an independent prognostic marker for each tissue-storage type. We analyzed four CpG sites of LINE-1 and examined the methylation levels at these sites in 25 FFPE and 41 frozen GC tissues by quantitative bisulfite pyrosequencing. The LINE-1 methylation status was significantly different between the FFPE and frozen GC tissues (p < 0.001). We further analyzed the clinicopathological features in the two groups separately. In the frozen GC tissues, LINE-1 was significantly hypomethylated in GC tissues compared to their corresponding normal gastric mucosa tissues (p < 0.001), and its methylation status was associated with gender, differentiation state, and lymphatic and venous invasion of GC. In the FFPE GC tissues, the methylation levels of LINE-1 differed according to tumor location and venous invasion of GC. In conclusion, LINE-1 can be used as a useful methylation marker for venous invasion in both FFPE and frozen tumor tissues of GC.
Collapse
Affiliation(s)
- Jimin Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Boram Choi
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Tae-Han Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Hwi-Nyeong Choe
- Department of Nursing, Seoul National University Hospital, Seoul 03080,
Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| |
Collapse
|
14
|
The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies. Int J Genomics 2017; 2017:1926304. [PMID: 28246590 PMCID: PMC5299160 DOI: 10.1155/2017/1926304] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin fixed-paraffin-embedded (FFPE) tissue processing remains the most economical approach for longitudinal tissue specimen storage. Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery. Many studies have measured the accuracy and repeatability of data generated from FFPE specimens using high throughput genomic assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here, we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens across several platforms that include microarray, high throughput sequencing, and NanoString.
Collapse
|
15
|
Deamination Effects in Formalin-Fixed, Paraffin-Embedded Tissue Samples in the Era of Precision Medicine. J Mol Diagn 2016; 19:137-146. [PMID: 27840062 DOI: 10.1016/j.jmoldx.2016.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
Deamination of nucleotides causes C:G>T:A changes in formalin-fixed, paraffin-embedded (FFPE) tissue samples and produces false positives during next-generation sequencing (NGS). Uracil DNA glycosylase (UDG) helps eliminate this issue, but the effect of UDG in different tissue preparation conditions has not been rigorously studied. To investigate whether UDG can reduce false-positive single-nucleotide variant (SNV) calls, we used tumor and normal tissues from gastric adenocarcinoma patients prepared using different fixation times and pH conditions. FFPE tumor blocks >10 years were also evaluated for the comparison. We performed semiconductor-based NGS to evaluate nucleotide changes and used UDG to test deamination-related effects. Sequencing quality parameters mildly worsened with prolonged fixation time, acidic pH, and delayed fixation. SNV calls and C:G>T:A changes increased after >48 hours of fixation. In both recently prepared and old FFPE tissue blocks, UDG treatment reduced deamination-induced nucleotide changes. In the recently prepared samples, both high-quality SNVs and mean target coverage were remarkably increased on treatment with UDG. However, the quality of NGS results from old-age samples varied irrespective of UDG treatment. In conclusion, based on our findings, we believe that when performing NGS on recently embedded blocks, it is important to consider that certain poorly fixed samples may be at the risk of being deaminated, which can be corrected with UDG treatment.
Collapse
|
16
|
Payne DA, Baluchova K, Peoc'h KH, van Schaik RHN, Chan KCA, Maekawa M, Mamotte C, Russomando G, Rousseau F, Ahmad-Nejad P. Pre-examination factors affecting molecular diagnostic test results and interpretation: A case-based approach. Clin Chim Acta 2016; 467:59-69. [PMID: 27321365 DOI: 10.1016/j.cca.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. METHODS The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. CONCLUSIONS The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics.
Collapse
Affiliation(s)
- Deborah A Payne
- Molecular Services, APP-UniPath LLC, American Pathology Partners-UniPath, 6116 East Warren Ave., Denver, CO, USA.
| | - Katarina Baluchova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, Division of Oncology, Mala Hora 4C, 036 01 Martin, Slovakia; Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Molecular Biology, Mala Hora 4C, 036 01 Martin, Slovakia
| | - Katell H Peoc'h
- AP-HP Hôpital Beaujon, Service de Biochimie clinique, Clichy F-92118, France; Université Paris Diderot, UFR de Médecine site Bichat, INSERM UMRs-1149, Paris, France
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K C Allen Chan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University, Perth, Australia
| | - Graciela Russomando
- Molecular Biology and Biotechnology Department, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - François Rousseau
- Department of Medical Biology, Direction médicale des services hospitaliers, CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Centre for Clinical and Translational Research (CCTR), HELIOS Hospital, Heusnerstraße 40, 42283 Wuppertal, Witten/Herdecke University, Germany
| |
Collapse
|
17
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Siegel EM, Berglund AE, Riggs BM, Eschrich SA, Putney RM, Ajidahun AO, Coppola D, Shibata D. Expanding epigenomics to archived FFPE tissues: an evaluation of DNA repair methodologies. Cancer Epidemiol Biomarkers Prev 2015; 23:2622-31. [PMID: 25472669 DOI: 10.1158/1055-9965.epi-14-0464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies are emerging in the field of cancer epidemiology with the rapid development of large-scale methylation array platforms. Until recently, these methods were only valid for DNA from flash frozen (FF) tissues. Novel techniques for repairing DNA from formalin-fixed paraffin-embedded (FFPE) tissues have emerged; however, a direct comparison of FFPE DNA repair methods before analysis on genome-wide methylation array to matched FF tissues has not been conducted. METHODS We conducted a systematic performance comparison of two DNA repair methods (REPLI-g Ligase vs. Infinium HD Restore Kit) on FFPE-DNA compared with matched FF tissues on the Infinium 450K array. A threshold of discordant methylation between FF-FFPE pairs was set at Δβ > 0.3. The correlations of β-values from FF-FFPE pairs were compared across methods and experimental conditions. RESULTS The Illumina Restore kit outperformed the REPLI-g ligation method with respect to reproducibility of replicates (R(2) > 0.970), highly correlated β-values between FF-FFPE (R(2) > 0.888), and fewest discordant loci between FF-FFPE (≤0.61%). The performance of the Restore kit was validated in an independent set of 121 FFPE tissues. CONCLUSIONS The Restore kit outperformed RELPI-g ligation in restoring FFPE-derived DNA before analysis on the Infinium 450K methylation array. Our findings provide critical guidance that may significantly enhance the breadth of diseases that can be studied by methylomic profiling. IMPACT Epigenomic studies using FFPE tissues should now be considered among cancers that have not been fully characterized from an epigenomic standpoint. These findings promote novel epigenome-wide studies focused on cancer etiology, identification of novel biomarkers, and developing targeted therapies. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology."
Collapse
Affiliation(s)
- Erin M Siegel
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bridget M Riggs
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Abidemi O Ajidahun
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Domenico Coppola
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David Shibata
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
19
|
Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays. J Transl Med 2015; 95:833-42. [PMID: 25867767 DOI: 10.1038/labinvest.2015.53] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 02/07/2023] Open
Abstract
Current genome-wide methods to detect DNA-methylation in healthy and diseased tissue require high-quality DNA from fresh-frozen (FF) samples. However, well-annotated clinical samples are mostly available as formalin-fixed, paraffin-embedded (FFPE) tissues containing poor-quality DNA. To overcome this limitation, we here aimed to evaluate a DNA restoration protocol for usage with the genome-wide Infinium HumanMethylation450 BeadChip assay (HM-450K). Sixty-six DNA samples from normal colon (n=9) and breast cancer (n=11) were interrogated separately using HM-450K. Analyses included matched FF/FFPE samples and technical duplicates. FFPE DNA was processed with (FFPEr) or without a DNA restoration protocol (Illumina). Differentially methylated genes were finally validated in 24 additional FFPE tissues using nested methylation-specific PCR (MSP). In summary, β-values correlation between FFPEr duplicates was high (ρ=0.9927 (s.d. ±0.0015)). Matched FF/FFPEr correlation was also high (ρ=0.9590 (s.d. ±0.0184)) compared with matched FF/FFPE (ρ=0.8051 (s.d. ±0.1028). Probe detection rate in FFPEr samples (98.37%, s.d. ±0.66) was comparable to FF samples (99.98%, s.d. ±0.019) and substantially lower in FFPE samples (82.31%, s.d. ±18.65). Assay robustness was not decreased by sample archival age up to 10 years. We could also demonstrate no decrease in assay robustness when using 100 ng of DNA input only. Four out of the five selected differentially methylated genes could be validated by MSP. The gene failing validation by PCR showed high variation of CpG β-values in primer-binding sites. In conclusion, by using the FFPE DNA restoration protocol, HM-450K assays provide robust, accurate and reproducible results with FFPE tissue-derived DNA, which are comparable to those obtained with FF tissue. Most importantly, differentially methylated genes can be validated using more sensitive techniques, such as nested MSP, altogether providing an epigenomics platform for molecular pathological epidemiology research on archived samples with limited tissue amount.
Collapse
|
20
|
Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb) 2015; 25:161-76. [PMID: 26110029 PMCID: PMC4470106 DOI: 10.11613/bm.2015.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets.
Collapse
Affiliation(s)
- Alja Videtic Paska
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Greytak SR, Engel KB, Bass BP, Moore HM. Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature. Cancer Res 2015; 75:1541-7. [PMID: 25836717 DOI: 10.1158/0008-5472.can-14-2378] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue biospecimens are a valuable resource for molecular cancer research. Although much can be gained from their use, it remains unclear whether the genomic and expression profiles obtained from FFPE biospecimens accurately reflect the physiologic condition of the patient from which they were procured, or if such profiles are confounded by biologic effects from formalin fixation and processing. To assess the physiologic accuracy of genomic and expression data generated with FFPE specimens, we surveyed the literature for articles investigating genomic and expression endpoints in case-matched FFPE and fresh or frozen human biospecimens using the National Cancer Institute's Biospecimen Research Database (http://biospecimens.cancer.gov/brd). Results of the survey revealed that the level of concordance between differentially preserved biospecimens varied among analytical parameters and platforms but also among reports, genes/transcripts of interest, and tumor status. The identified analytical techniques and parameters that resulted in strong correlations between FFPE and frozen biospecimens may provide guidance when optimizing molecular protocols for FFPE use; however, discrepancies reported for similar assays also illustrate the importance of validating protocols optimized for use with FFPE specimens with a case-matched fresh or frozen cohort for each platform, gene or transcript, and FFPE processing regime. On the basis of evidence published to date, validation of analytical parameters with a properly handled frozen cohort is necessary to ensure a high degree of concordance and confidence in the results obtained with FFPE biospecimens.
Collapse
Affiliation(s)
| | | | | | - Helen M Moore
- Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
22
|
Andersen GB, Hager H, Hansen LL, Tost J. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene-fixed samples compared with restored formalin-fixed and paraffin-embedded DNA. Anal Biochem 2015; 468:50-8. [DOI: 10.1016/j.ab.2014.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023]
|
23
|
The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique. J Transl Med 2014; 94:927-33. [PMID: 24933424 DOI: 10.1038/labinvest.2014.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023] Open
Abstract
Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.
Collapse
|
24
|
Dumenil TD, Wockner LF, Bettington M, McKeone DM, Klein K, Bowdler LM, Montgomery GW, Leggett BA, Whitehall VLJ. Genome-wide DNA methylation analysis of formalin-fixed paraffin embedded colorectal cancer tissue. Genes Chromosomes Cancer 2014; 53:537-48. [PMID: 24677610 DOI: 10.1002/gcc.22164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/24/2023] Open
Abstract
Formalin fixation and embedding of clinical tissue samples in paraffin is a common method for archiving biological material. These samples are often well annotated and provide an invaluable resource for research. However, this process of fixation and storage of tissue leads to DNA damage and fragmentation. The use of DNA from formalin fixed, paraffin-embedded (FFPE) tissue to interrogate methylation levels on a genome-wide scale can pose challenges. We compared fresh and matched FFPE tissue DNA samples using the Illumina Infinium HD Human Methylation 450K BeadChip platform with a companion application for repair and "restoration" of DNA from FFPE tissue. Our results showed good correlation between fresh and FFPE sample data. FFPE DNA captured 99% of the CpG sites on the array on average. Significant cancer subgroups based on the CpG island methylator phenotype (CIMP) were clearly distinguished for both fresh and FFPE sample sets with cluster and scaling analysis. The DNA methylation status for the five standard CIMP panel genes which was evaluated for all samples by the MethyLight assay was correctly assigned in both fresh and FFPE samples by the array data. We conclude that the "restoration" method followed by assay on the Infinium HD Human Methylation 450K microarray can produce good quality data for DNA from FFPE samples.
Collapse
Affiliation(s)
- Troy D Dumenil
- Conjoint Gastroenterology Laboratory, Royal Brisbane and Women's Hospital, Clinical Research Centre and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. J Mol Diagn 2013; 15:623-33. [PMID: 23810758 DOI: 10.1016/j.jmoldx.2013.05.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/11/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) has emerged as a powerful technique for the detection of genetic variants in the clinical laboratory. NGS can be performed using DNA from FFPE tissue, but it is unknown whether such specimens are truly equivalent to unfixed tissue for NGS applications. To address this question, we performed hybridization-capture enrichment and multiplexed Illumina NGS for 27 cancer-related genes using DNA from 16 paired fresh-frozen and routine FFPE lung adenocarcinoma specimens and conducted extensive comparisons between the sequence data from each sample type. This analysis revealed small but detectable differences between FFPE and frozen samples. Compared with frozen samples, NGS data from FFPE samples had smaller library insert sizes, greater coverage variability, and an increase in C to T transitions that was most pronounced at CpG dinucleotides, suggesting interplay between DNA methylation and formalin-induced changes; however, the error rate, library complexity, enrichment performance, and coverage statistics were not significantly different. Comparison of base calls between paired samples demonstrated concordances of >99.99%, with 96.8% agreement in the single-nucleotide variants detected and >98% accuracy of NGS data when compared with genotypes from an orthogonal single-nucleotide polymorphism array platform. This study demonstrates that routine processing of FFPE samples has a detectable but negligible effect on NGS data and that these samples can be a reliable substrate for clinical NGS testing.
Collapse
|
26
|
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26:465-84. [PMID: 23307060 PMCID: PMC3637979 DOI: 10.1038/modpathol.2012.214] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sipos F, Mũzes G, Patai AV, Fũri I, Péterfia B, Hollósi P, Molnár B, Tulassay Z. Genome-wide screening for understanding the role of DNA methylation in colorectal cancer. Epigenomics 2013; 5:569-81. [PMID: 24059802 DOI: 10.2217/epi.13.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA methylation analysis methods have undergone an impressive revolution over the past 15 years. Regarding colorectal cancer (CRC), the localization and distribution of several differently methylated genes have been determined by genome-wide DNA methylation assays. These genes do not just influence the pathogenesis of CRC, but can be used further as diagnostic or prognostic markers. Moreover, the identified four DNA methylation-based subgroups of CRC have important clinical and therapeutic merit. Since genome-wide DNA methylation analyzes result in a large amount of data, there is a need for complex bioinformatic and pathway analysis. Future challenges in epigenetic alterations of CRC include the demand for comprehensive identification and experimental validation of gene abnormalities. By introduction of genome-wide DNA methylation profiling into clinical practice not only the patients' risk stratification but development of targeted therapies will also be possible.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 2012; 12:473-87. [PMID: 22702364 DOI: 10.1586/erm.12.45] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Altered DNA methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. DNA methylation biomarkers, which use those specific methylation changes, provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic stratification and post-therapeutic monitoring. Here we review current approaches to developing and applying DNA methylation biomarkers in cancer therapy. We discuss the obstacles that have so far limited the routine use of DNA methylation biomarkers in clinical settings and describe ways in which these obstacles can be overcome. Finally, we summarize the current state of clinical implementation for some of the most widely studied and well-validated DNA methylation biomarkers, including SEPT9, VIM, SHOX2, PITX2 and MGMT.
Collapse
Affiliation(s)
- Thomas Mikeska
- Molecular Pathology Research & Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
| | | | | | | |
Collapse
|
29
|
Thirlwell C, Feber A, Lechner M, Teschendorff AE, Beck S. Comments on: Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed paraffin-embedded paired tumor and normal tissue. BMC Res Notes 2012; 5:631. [PMID: 23148593 PMCID: PMC3531275 DOI: 10.1186/1756-0500-5-631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022] Open
Abstract
BMC Research Notes recently published a research article regarding the use of ligated DNA extracted from formalin-fixed paraffin embedded (FFPE) tissue on the Illumina Infinium methylation platform - “Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue” Jasmine et al. BMC Research Notes 2012, 5:117. This article repeatedly refers to our previous work and concludes that methylation data obtained from ligated FFPE extracted DNA should be used with great caution. In this Discussion we review the data analysis performed in Jasmine et al’s paper and suggest limitations which subsequently lead the authors to draw what we believe are incorrect conclusions. Moreover, we continue to analyse genome-wide methylation data from DNA extracted from FFPE tissue successfully on both the HumMeth27 and 450 K arrays.
Collapse
Affiliation(s)
- Christina Thirlwell
- Medical Genomics Laboratory, UCL Cancer Institute, 72, Huntley Street,London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|