1
|
Bremer Hinckel BC, Marlais T, Airs S, Bhattacharyya T, Imamura H, Dujardin JC, El-Safi S, Singh OP, Sundar S, Falconar AK, Andersson B, Litvinov S, Miles MA, Mertens P. Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Negl Trop Dis 2019; 13:e0007353. [PMID: 31059497 PMCID: PMC6522066 DOI: 10.1371/journal.pntd.0007353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/16/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
Background The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs. Methodology Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera. Results Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60—97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive. Conclusion We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL. Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites of the Leishmania donovani complex. Without treatment, VL is fatal. Although diagnostic techniques, mainly based on the detection of anti-Leishmania antibodies are available, invasive procedures such as microscopy from spleen or bone marrow aspirates are still required for the diagnosis of seronegative VL suspects, for the detection of recurrent cases and to confirm cure after successful treatment. Previous investigations showed the potential of IgG1 as a biomarker of post-chemotherapeutic relapse for VL in rapid diagnostic tests (RDTs) sensitised with crude lysate antigen (CLA). Here we employed in silico tools to search for desired protein features in a large number of L. donovani antigens detected by human IgG1 in western blots. We then employed prediction algorithms to profile epitopes from the shortlisted proteins. We screened a panel of high-scoring peptides in a high-throughput manner using arrays, with low reagent consumption. The most reactive peptide was adapted to RDTs, showing promising results of both sensitivity and specificity. This peptide has the potential of replacing the CLAs in IgG1 RDTs. Thus we believe that in silico tools can be used to optimise wet lab experiments for a rational search of biomarkers.
Collapse
Affiliation(s)
- Bruno Cesar Bremer Hinckel
- Coris BioConcept, Gembloux, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Airs
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hideo Imamura
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Sayda El-Safi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Bjorn Andersson
- Department of Cell- and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
2
|
Bhattacharyya T, Falconar AK, Luquetti AO, Costales JA, Grijalva MJ, Lewis MD, Messenger LA, Tran TT, Ramirez JD, Guhl F, Carrasco HJ, Diosque P, Garcia L, Litvinov SV, Miles MA. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition. PLoS Negl Trop Dis 2014; 8:e2892. [PMID: 24852444 PMCID: PMC4031129 DOI: 10.1371/journal.pntd.0002892] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. Methodology/Principal Findings We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. Conclusions/Significance These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages. Chagas disease remains a significant public health issue in Latin America. Caused by the single-celled parasite Trypanosoma cruzi, the main route of infection is via contact with contaminated faeces from blood-sucking triatomine bugs, but following successful insecticide spraying campaigns, congenital, food-borne, and transfusion/transplantation routes of infection have become more relevant. In the absence of successful chemotherapy, T. cruzi usually persists in the body for life, and in symptomatic cases may lead to death or debilitation by heart failure and/or gastrointestinal megasyndromes. As a species, T. cruzi displays great genetic diversity, and is subdivided into lineages called TcI - TcVI. Associating T. cruzi lineage with clinical symptoms is a key goal of Chagas disease research. Direct isolation and typing of T. cruzi from chronically infected patients is hampered by the sequestration of the parasite in host tissues. Identifying lineage-specific antibodies in serum provides an alternative approach to determining an individual's history of infection. Here, we performed lineage-specific serology using samples from a range of South American countries. We show that lineage-specific seropositivity is associated with geographical distributions and clinical outcome. These findings have wide implications for further diagnostics development and improved understanding of the epidemiology of Chagas disease.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | | | - Alejandro O. Luquetti
- Laboratorio de Chagas, Hospital das Clinicas, Universidade Federal de Goiás, Goiânia, Goias, Brazil
| | - Jaime A. Costales
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Mario J. Grijalva
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Trang T. Tran
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Juan-David Ramirez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá, Colombia
| | - Hernan J. Carrasco
- Universidad Central de Venezuela Instituto de Medicina Tropical, Caracas, Venezuela
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta, Argentina
| | - Lineth Garcia
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|