1
|
Gonzalez MM, Vizoso-Pinto MG, Erra-Balsells R, Gensch T, Cabrerizo FM. In Vitro Effect of 9,9'-Norharmane Dimer against Herpes Simplex Viruses. Int J Mol Sci 2024; 25:4966. [PMID: 38732185 PMCID: PMC11084892 DOI: 10.3390/ijms25094966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the β-carboline (βC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.
Collapse
Affiliation(s)
- María Micaela Gonzalez
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| | - Maria Guadalupe Vizoso-Pinto
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU, D-80336 Munich, Germany;
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina
- Laboratorio Central de Cs. Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires 1428, Argentina;
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Naturales Pabellón II, 3er P. Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1; Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhelm-Jonen-Straße, 52428 Jülich, Germany
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| |
Collapse
|
2
|
Villarruel FD, Denofrio MP, de León TS, Erra-Balsells R, Wolcan E, García Einschlag FS, Cabrerizo FM. Exploring potooxidative degradation pathways of harmol and harmalol alkaloids in water: effects of pH, excitation sources and atmospheric conditions. Phys Chem Chem Phys 2024; 26:6068-6079. [PMID: 38299458 DOI: 10.1039/d3cp05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This work explores the photochemical degradation of cationic species of 7-hydroxy-1-methyl-2H-pyrido[3,4-b]indole or harmol (1C) and the corresponding partially hydrogenated derivative 7-hydroxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole or harmalol (2C) in aqueous solution. UV-visible absorption and fluorescence emission spectroscopy coupled with multivariate data analysis (MCR-ALS and PARAFAC), HPLC and HRESI-MS techniques were used for both quantitative and qualitative analysis. The formation of hydrogen peroxide reactive oxygen species (ROS) was quantified, and the influence of pH, oxygen partial pressure and photoexcitation source on the photochemical degradation of both compounds was assessed. The potential implications on the biosynthesis of βCs and their biological role in living systems are discussed.
Collapse
Affiliation(s)
- Fernando D Villarruel
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| | - M Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| | - Tobías Schmidt de León
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires, Argentina
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires, Argentina
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, Diag. 113 y 64 (1900), La Plata, Argentina
| | - Fernando S García Einschlag
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, Diag. 113 y 64 (1900), La Plata, Argentina
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| |
Collapse
|
3
|
Ospina-Calvo B, De Gerónimo E, Villarruel FD, Aparicio VC, Ashworth L, Erra-Balsells R, Cabrerizo FM. Distribution of photoactive β-carboline alkaloids across Passiflora caerulea floral organs. Photochem Photobiol 2024; 100:87-100. [PMID: 37448143 DOI: 10.1111/php.13837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
This study reports valuable information regarding the presence and concentration of a series of photoactive β-carboline (βCs) alkaloids (norharmane, harmane, harmine, harmol, harmaline, and harmalol) and their distribution across the floral age and organs of Passiflora caerulea. UHPLC-MS/MS data reported herein reveal that the βCs' content ranged from 1 to 110 μg kg-1 , depending on the floral organ and age. In certain physiologically relevant organs, such as anthers, βCs' content was one order of magnitude higher than in other organs, suggesting a special role for βCs in this specific organ. βCs' content also varied in a structure-dependent manner. Alkaloids bearing a hydroxyl group at position C(7) of the main βC ring were present at concentrations one order of magnitude higher than other βC derivatives investigated. UV-visible and fluorescence spectroscopy of the flower extracts provided complementary information regarding other biologically relevant groups of chromophores (phenolic/indolic derivatives, flavonoids/carotenes, and chlorophylls). Since flowers are constantly exposed to solar radiation, the presence of photoactive βCs in floral organs may have several (photo)biological implications that are further discussed.
Collapse
Affiliation(s)
- Brian Ospina-Calvo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martin, Argentina
| | - Eduardo De Gerónimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Fernando D Villarruel
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martin, Argentina
| | - Virgina C Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Lorena Ashworth
- Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er P, Ciudad Universitaria, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P, Ciudad Universitaria, Buenos Aires, Argentina
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martin, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Arafa FM, Said H, Osman D, Rezki N, Aouad MR, Hagar M, Osman M, Elwakil BH, Jaremko M, Tolba MM. Nanoformulation-Based 1,2,3-Triazole Sulfonamides for Anti- Toxoplasma In Vitro Study. Trop Med Infect Dis 2023; 8:401. [PMID: 37624339 PMCID: PMC10460005 DOI: 10.3390/tropicalmed8080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasma gondii is deemed a successful parasite worldwide with a wide range of hosts. Currently, a combination of pyrimethamine and sulfadiazine serves as the first-line treatment; however, these drugs have serious adverse effects. Therefore, it is imperative to focus on new therapies that produce the desired effect with the lowest possible dose. The designation and synthesis of sulfonamide-1,2,3-triazole hybrids (3a-c) were performed to create hybrid frameworks. The newly synthesized compounds were loaded on chitosan nanoparticles (CNPs) to form nanoformulations (3a.CNP, 3b.CNP, 3c.CNP) for further in vitro investigation as an anti-Toxoplasma treatment. The current study demonstrated that all examined compounds were active against T. gondii in vitro relative to the control drug, sulfadiazine. 3c.CNP showed the best impact against T. gondii with the lowest IC50 value of 3.64 µg/mL. Using light microscopy, it was found that Vero cells treated with the three nanoformulae showed remarkable morphological improvement, and tachyzoites were rarely seen in the treated cells. Moreover, scanning and transmission electron microscopic studies confirmed the efficacy of the prepared nanoformulae on the parasites. All of them caused parasite ultrastructural damage and altered morphology, suggesting a cytopathic effect and hence confirming their promising anti-Toxoplasma activity.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 21577, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Doaa Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21526, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
5
|
Huang W, Rodrigues J, Bilgo E, Tormo JR, Challenger JD, De Cozar-Gallardo C, Pérez-Victoria I, Reyes F, Castañeda-Casado P, Gnambani EJ, Hien DFDS, Konkobo M, Urones B, Coppens I, Mendoza-Losana A, Ballell L, Diabate A, Churcher TS, Jacobs-Lorena M. Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science 2023; 381:533-540. [PMID: 37535741 DOI: 10.1126/science.adf8141] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | | | - Joseph D Challenger
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | | | | | | | - Pablo Castañeda-Casado
- Drug Metabolism and Pharmacokinetics (DMPK) Discovery, In Vitro/In Vivo Translation (IVIVT), GSK, 28760 Tres Cantos, Madrid, Spain
| | | | | | - Maurice Konkobo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | - Beatriz Urones
- Global Health Medicines R&D, GSK, Tres Cantos, 28760 Madrid, Spain
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Lluís Ballell
- Global Health Medicines R&D, GSK, Tres Cantos, 28760 Madrid, Spain
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Bhattacharya P, De S. Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics. The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.
Collapse
Affiliation(s)
| | - Swati De
- Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
7
|
Schenberg EE, Gerber K. Overcoming epistemic injustices in the biomedical study of ayahuasca: Towards ethical and sustainable regulation. Transcult Psychiatry 2022; 59:610-624. [PMID: 34986699 DOI: 10.1177/13634615211062962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After decades of biomedical research on ayahuasca's molecular compounds and their physiological effects, recent clinical trials show evidence of therapeutic potential for depression. However, indigenous peoples have been using ayahuasca therapeutically for a very long time, and thus we question the epistemic authority attributed to scientific studies, proposing that epistemic injustices were committed with practical, cultural, social, and legal consequences. We question epistemic authority based on the double-blind design, the molecularization discourse, and contextual issues about safety. We propose a new approach to foster epistemically fair research, outlining how to enforce indigenous rights, considering the Brazilian, Peruvian, and Colombian cases. Indigenous peoples have the right to maintain, control, protect, and develop their biocultural heritage, traditional knowledge, and cultural expressions, including traditional medicine practices. New regulations about ayahuasca must respect the free, prior, and informed consent of indigenous peoples according to the International Labor Organization Indigenous and Tribal Peoples Convention no. 169. The declaration of the ayahuasca complex as a national cultural heritage may prevent patenting from third parties, fostering the development of traditional medicine. When involving isolated compounds derived from traditional knowledge, benefit-sharing agreements are mandatory according to the United Nations' Convention on Biological Diversity. Considering the extremely high demand to treat millions of depressed patients, the medicalization of ayahuasca without adequate regulation respectful of indigenous rights can be detrimental to indigenous peoples and their management of local environments, potentially harming the sustainability of the plants and of the Amazon itself, which is approaching its dieback tipping point.
Collapse
|
8
|
Gaafar MR, El-Mansoury ST, Eissa MM, Shalaby TI, Younis LK, Rashed HA. Effect of alginate nanoparticles on the immunogenicity of excretory-secretory antigens against acute toxoplasmosis in murine model. Acta Trop 2022; 225:106215. [PMID: 34687647 DOI: 10.1016/j.actatropica.2021.106215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/08/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Efficacy of alginate nanoparticles (Alg-NPs) as vaccine delivery for the excretory-secretory antigens (ESAs) against the virulent strain of Toxoplasma gondii was evaluated. Swiss albino mice were intraperitoneally immunized with three doses of either in vivo and in vitro-prepared ESA vaccines, 20 µg each, at 2-week intervals, then were challenged with 2500 tachyzoites of the RH HXGPRT (-) Toxoplasma gondii strain, four weeks later. Mice mortality, tachyzoite number in both peritoneal fluid and impression smear, and viability, ultrastructural tachyzoite changes, measuring immunological markers, and histopathological changes of both liver and spleen were studied, in comparison to alum adjuvanted ESAs and infected control subgroups. The in vivo-prepared Alg-NPs loaded ESAs vaccinated subgroups induced significant reduction in mice mortality, tachyzoite count in both peritoneal fluid and impression smears and viability. Scanning electron microscopy revealed tachyzoites deformities with multiple irregularities, while transmission electron microscopy showed tachyzoites distortion, disrupted plasma membranes, loss of nuclear integrities, and absence of dense granules with extensive vacuolations. A statistically significant increase in the level of both IFN-γ and anti-Toxoplasma IgG was noted. Histopathological results recorded amelioration of the pathological changes induced by Toxoplasma infection in both liver and spleen, with scanty parasites. Therefore, Alg-NPs proved its effectiveness in enhancing the ESAs antigencity, and recommended to test its potentiality as drugs carrier for anti-Toxoplasma agents to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Maha R Gaafar
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Salwa T El-Mansoury
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Maha M Eissa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Thanaa I Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Layla K Younis
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Hoda A Rashed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
9
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
10
|
Photophysical properties of a β-Carboline Rhenium (I) complex. Solvent effects on excited states and their redox reactivity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
11
|
N,N-Bis(Substituted benzyl)-β-Carbolineum Bromides as Potential Anticancer Therapeutics: Design, Synthesis, Cytotoxicity, Drug-DNA Intercalation and In-Silico Binding Properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Alomar ML, Yañuk JG, Angel SO, Gonzalez MM, Cabrerizo FM. In vitro Effect of Harmine Alkaloid and Its N-Methyl Derivatives Against Toxoplasma gondii. Front Microbiol 2021; 12:716534. [PMID: 34421876 PMCID: PMC8375385 DOI: 10.3389/fmicb.2021.716534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 μM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.
Collapse
Affiliation(s)
- Maria L Alomar
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Juan G Yañuk
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, UNSAM - CONICET, Chascomús, Argentina
| | - M Micaela Gonzalez
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Franco M Cabrerizo
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
13
|
Boromycin Has Potent Anti- Toxoplasma and Anti- Cryptosporidium Activity. Antimicrob Agents Chemother 2021; 65:AAC.01278-20. [PMID: 33468470 DOI: 10.1128/aac.01278-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma gondii and Cryptosporidium parvum, members of the phylum Apicomplexa, are significant pathogens of both humans and animals worldwide for which new and effective therapeutics are needed. Here, we describe the activity of the antibiotic boromycin against Toxoplasma and Cryptosporidium Boromycin potently inhibited intracellular proliferation of both T. gondii and C. parvum at half-maximal effective concentrations (EC50) of 2.27 nM and 4.99 nM, respectively. Treatment of extracellular T. gondii tachyzoites with 25 nM boromycin for 30 min suppressed 84% of parasite growth, but T. gondii tachyzoite invasion into host cells was not affected by boromycin. Immunofluorescence of boromycin-treated T. gondii showed loss of morphologically intact parasites with randomly distributed surface antigens inside the parasitophorous vacuoles. Boromycin exhibited a high selectivity for the parasites over their host cells. These results suggest that boromycin is a promising new drug candidate for treating toxoplasmosis and cryptosporidiosis.
Collapse
|
14
|
A convenient synthesis of β-carbolines by iron-catalyzed aerobic decarboxylative/dehydrogenative aromatization of tetrahydro-β-carbolines under air. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, Hassan Y, Mustapha T, Majid RA. Phytochemicals and Potential Therapeutic Targets on Toxoplasma gondii Parasite. Mini Rev Med Chem 2021; 20:739-753. [PMID: 31660810 DOI: 10.2174/1389557519666191029105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 11/22/2022]
Abstract
Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
Collapse
Affiliation(s)
- Sharif Alhassan Abdullahi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Ngah Zasmy Unyah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Noshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Wana Mohammed Nasir
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Biological Sciences, Faculty of Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ashraf Ahmad Alapid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Zoology, Faculty of Science-Alassaba, University of Gharyan, Gharyan, Libya
| | - Yahaya Hassan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Medical Laboratory Sciences, Bayero University Kano, Nigeria
| | - Tijjani Mustapha
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Biological Sciences, Faculty of Science, Yobe State University, Damaturi, Nigeria
| | - Roslaini Abd Majid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| |
Collapse
|
16
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
17
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
18
|
Elkerdany ED, Elnassery SM, Arafa FM, Zaki SAF, Mady RF. In vitro effect of a novel protease inhibitor cocktail on Toxoplasma gondii tachyzoites. Exp Parasitol 2020; 219:108010. [PMID: 33007297 DOI: 10.1016/j.exppara.2020.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
Toxoplasmosis is a zoonotic disease and a global food and water-borne infection. The disease is caused by the parasite Toxoplasma gondii, which is a highly successful and remarkable pathogen because of its ability to infect almost any nucleated cell in warm-blooded animals. The present study was done to demonstrate the effect of protease inhibitors cocktail (PIC), which inhibit both cysteine and serine proteases, on in vitro cultured T. gondii tachyzoites on HepG2 cell line. This was achieved by assessing its effect on the invasion of the host cells and the intracellular development of T.gondii tachyzoites through measuring their number and viability after their incubation with PIC. Based on the results of the study, it was evident that the inhibitory action of the PIC was effective when applied to tachyzoites before their cultivation on HepG2 cells. Pre-treatment of T.gondii tachyzoites with PIC resulted in failure of the invasion of most of the tachyzoites and decreased the intracellular multiplication and viability of the tachyzoites that succeeded in the initial invasion process. Ultrastructural studies showed morphological alteration in tachyzoites and disruption in their organelles. This effect was irreversible till the complete lysis of cell monolayer in cultures. It can be concluded that PIC, at in vitro levels, could prevent invasion and intracellular multiplication of Toxoplasma tachyzoites. In addition, it is cost effective compared to individual protease inhibitors. It also had the benefit of combined therapy as it lowered the concentration of each protease inhibitor used in the cocktail. Other in vivo experiments are required to validate the cocktail efficacy against toxoplasmosis. Further studies may be needed to establish the exact mechanism by which the PIC exerts its effect on Toxoplasma tachyzoites behavior and its secretory pathway.
Collapse
Affiliation(s)
- Eman D Elkerdany
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Suzanne M Elnassery
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Sahar Abdel-Fattah Zaki
- Department of Environmental Biotechnology, Genetic Engineering Biotechnology Institute, City of Scientific Research and Technological Applications, Egypt.
| | - Rasha F Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
19
|
Denofrio MP, Rasse-Suriani FAO, Paredes JM, Fassetta F, Crovetto L, Giron MD, Salto R, Epe B, Cabrerizo FM. N-Methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains. Org Biomol Chem 2020; 18:6519-6530. [PMID: 32628228 DOI: 10.1039/d0ob01122c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Methyl-β-carboline (βC) alkaloids, including normelinonine F (1b) and melinonine F (2b), have been found in a vast range of living species playing different biological, biomedical and/or pharmacological roles. Despite this, molecular bases of the mechanisms through which these alkaloids would exert their effect still remain unknown. Fundamental aspects including the photosensitizing properties and intracellular internalization of a selected group of N-methyl-βC alkaloids were investigated herein. Data reveal that methylation of the βC main ring enhances its photosensitizing properties either by increasing its binding affinity with DNA as a biomolecular target and/or by increasing its oxidation potential, in a structure-dependent manner. As a general rule, N(9)-substituted βCs showed the highest photosensitizing efficiency. With the exception of 2-methyl-harminium, all the N-methyl-βCs investigated herein induce a similar DNA photodamage profile, dominated largely by oxidized purines. This fact represents a distinctive behavior when comparing with N-unsubstituted-βCs. On the other hand, although all the investigated compounds might accumulate mainly into the mitochondria of HeLa cells, methylation provides a distinctive dynamic pattern for mitochondrial uptake. While rapid (passive) diffusion is most probably reponsible for the prompt uptake/release of neutral βCs, an active transport appears to mediate the (reatively slow) uptake of the quaternary cationic βCs. This might be a consequence of a distinctive subcellular localization (mitochondrial membrane and/or matrix) or interaction with intracellular components. Biomedical and biotechnological implications are also discussed herein.
Collapse
Affiliation(s)
- M Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| | - Federico A O Rasse-Suriani
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina. and Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, Universidad Nacional de La Plata, Diag. 113 y 64 (1900), La Plata, Argentina
| | - Jose M Paredes
- Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain.
| | - Federico Fassetta
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| | - Luis Crovetto
- Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain.
| | - Maria D Giron
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, Mainz, Germany
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
| |
Collapse
|
20
|
Angel SO, Vanagas L, Ruiz DM, Cristaldi C, Saldarriaga Cartagena AM, Sullivan WJ. Emerging Therapeutic Targets Against Toxoplasma gondii: Update on DNA Repair Response Inhibitors and Genotoxic Drugs. Front Cell Infect Microbiol 2020; 10:289. [PMID: 32656097 PMCID: PMC7325978 DOI: 10.3389/fcimb.2020.00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Diego M Ruiz
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Ana M Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - William J Sullivan
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Immunogenicity and Protective Effect of a Virus-Like Particle Containing the SAG1 Antigen of Toxoplasma gondii as a Potential Vaccine Candidate for Toxoplasmosis. Biomedicines 2020; 8:biomedicines8040091. [PMID: 32325746 PMCID: PMC7235809 DOI: 10.3390/biomedicines8040091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
This study was carried out to evaluate the vaccination effect of a virus-like particle (VLP) including the surface antigen 1 (SAG1) of Toxoplasma gondii as a potential vaccine for toxoplasmosis. The SAG1 virus-like particles (SAG1-VLPs) were expressed by Sf9 cells, and their expression was confirmed through cloning, RT-PCR analysis, and western blot method. The immunogenicity and vaccine efficacy of SAG1-VLPs were assessed by the antibody response, cytokine analysis, neutralization activity, splenocyte assay, and survival rates through a mouse model. In particular, IgG, IgG1, IgG2a, and IgA were markedly increased after immunization, and the survival rates of T. gondii were strongly inhibited by the immunized sera. Furthermore, the immunization of SAG1-VLPs effectively decreased the production of specific cytokines, such as IL-1β, IL-6, TNF-α, and IFN-γ, after parasite infection. In particular, the immunized group showed strong activity and viability compared with the non-immunized infection group, and their survival rate was 75%. These results demonstrate that SAG1-VLP not only has the immunogenicity to block T. gondii infection by effectively inducing the generation of specific antibodies against T. gondii, but is also an effective antigen delivery system for preventing toxoplasmosis. This study indicates that SAG1-VLP can be effectively utilized as a promising vaccine candidate for preventing or inhibiting T. gondii infection.
Collapse
|
22
|
Bernstein M, Pardini L, Campero LM, Helman E, Unzaga JM, Venturini MC, Moré G. Evaluation of biological behavior of Toxoplasma gondii atypical isolates # 14 and # 163. Exp Parasitol 2020; 211:107860. [PMID: 32087219 DOI: 10.1016/j.exppara.2020.107860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite capable of infecting warm-blooded animals, including humans. A highly diverse genetic population has been reported in Central and South America, predominating mainly atypical genotypes. Different genotypes showed different biological behavior in mice. The aim of this study was to evaluate the biological behavior of T. gondii isolates obtained from Macropus rufogriseus (TgMr) and Saimiri boliviensis (TgSb) identified as atypical genotypes # 14 and # 163, respectively. Strains RH, ME49 and VEG were used as reference for clonal types I, II and III, respectively. In vitro invasion and replication capacity assays were analyzed at 6 and 18 hpi, respectively. In vivo assay was performed in Swiss mice (n = 30) using 1 × 102 and 1 × 103 parasites/mouse as infective doses (ME49, VEG, TgMr, TgSb and negative control). Morbi-mortality and tissues PCR were assessed. Lymphoproliferation assays were performed and gamma interferon was measured by ELISA. The ME49 strain showed the highest invasion, followed by TgSb and VEG, while RH and TgMr presented the lowest invasions. The RH strain and the TgSb isolate showed more endodyogeny events (fastest doubling times) than VEG and ME49 strains and the TgMr isolate. Both atypical isolates showed high virulence (100% morbi-mortality, at 8-10 dpi) and parasite DNA was detected in all tissue samples. Splenocytes from mice inoculated with TgMr and TgSb registered the highest values of gamma interferon. An in vitro invasion-replication index was established which correlates inversely with virulence in mice. In conclusion, T. gondii atypical isolates # 14 and # 163 showed a different in vitro behavior than clonal strains, with low invasion-replication indexes but being highly virulent in mouse model.
Collapse
Affiliation(s)
- Mariana Bernstein
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Lais Pardini
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucía M Campero
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Elisa Helman
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan M Unzaga
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina
| | - María C Venturini
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina
| | - Gastón Moré
- Laboratorio de Inmunoparasitología (LAINPA), FCV-UNLP, La Plata, Bs. As., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Villarruel FD, Denofrio MP, Erra-Balsells R, Wolcan E, Cabrerizo FM. Photophysical and spectroscopic features of 3,4-dihydro-β-carbolines: a combined experimental and theoretical approach. Phys Chem Chem Phys 2020; 22:20901-20913. [DOI: 10.1039/d0cp03363d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spectroscopic and photophysical properties of 3,4-dihydro-β-carboline alkaloids in aqueous were revisited. Absorbing and emitting species present in aqueous solution in the entire pH range were reassigned by DFT calculations.
Collapse
Affiliation(s)
- Fernando D. Villarruel
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| | - M. Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II
- 3er P
- Ciudad Universitaria
- (1428) Buenos Aires
- Argentina
| | - Ezequiel Wolcan
- INIFTA – CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| |
Collapse
|
24
|
Susceptibility of Toxoplasma gondii to Ethanolic Extract of Tinospora crispa in Vero Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2916547. [PMID: 31827548 PMCID: PMC6885813 DOI: 10.1155/2019/2916547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Background Toxoplasmosis remains widely distributed globally and is one of the major neglected parasitic zoonotic infections. The infection is still endemic in most parts of the world due to poor control as well as challenges of the currently used medications which can be overcome by using natural products. This study evaluated the effect of ethanolic extract from the stem of Tinospora crispa (EETC) on host cell invasion and intracellular replication of Toxoplasma gondii. Method The stem powder of T. crispa was soaked in absolute ethanol for 72 hours. The resulting ethanolic extract was screened for the presence of phytochemicals. Vero cells monolayer in 96-well plate was infected with RH strain of T. gondii and treated with concentrations of the EETC, Veratrine alkaloid, and clindamycin ranging from 1.56 to 200 μg/mL. MTT assay was conducted after 24 hours to evaluate the cytotoxicity and antiparasitic activities of the EETC. Four and 24 hours treatment models were adapted to assess the infection index and intracellular proliferation of T. Results The study revealed that the EETC had no cytotoxic effects on Vero cells with IC50 = 179 μg/mL, as compared to clindamycin (IC50 = 116.5 μg/mL) and Veratrine alkaloid (IC50 = 60.4 μg/mL). The EETC had good anti-toxoplasma activities with IC50 = 6.31 μg/mL in comparison with clindamycin (IC50 = 8.33 μg/mL) and Veratrine alkaloid (IC50 = 14.25 μg/mL). The EETC caused more than 70% and 80% reduction in infection index and intracellular proliferation in both treatment models, respectively. Conclusion This in vitro study showed that the EETC contains promising phytochemicals effective against T. gondii and safe to the host cells.
Collapse
|
25
|
Villarruel F, Denofrio MP, Rasse-Suriani FAO, García Einschlag FS, Schmidt De León T, Erra-Balsells R, Cabrerizo FM. Light-induced full aromatization and hydroxylation of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole alkaloid: Oxygen partial pressure as a key modulator of the photoproducts distribution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 199:111600. [PMID: 31473429 DOI: 10.1016/j.jphotobiol.2019.111600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
Full-aromatic and partially hydrogenated β-carboline (βC) derivatives constitute a group of alkaloids widely distributed in a great variety of living systems. In plants and bacteria, tetrahydro-βCs are the primary product of the Pictet-Spengler enzymatically catalyzed condensation. Tetrahydro-βC skeleton is further modified giving rise to the formation of a vast set of derivatives including dihydro- and full-aromatic βCs. However, in most of the cases, the later processes still remain unclear and other sources, such as photo-triggered reactions, deserve to be explored. In this context, the photophysic and photochemistry of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole or harmaline (Hlina) in aqueous solution is reported herein. UV-visible absorption and fluorescence emission spectroscopy coupled with multivariate data analysis (PARAFAC), HPLC and HRESI-MS techniques were used for both quantitative and qualitative analysis. The formation singlet oxygen and hydrogen peroxide reactive oxygen species (ROS) was quantified and their role together with the influence of pH and oxygen partial pressure on the photochemical degradation of HlinaH+ was assessed. We report herein the first study on photochemical full-aromatization of a dihydro-βC derivative. These results can shed some light on the βCs biosynthesis and role in living systems.
Collapse
Affiliation(s)
- Fernando Villarruel
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, Universidad Nacional de La Plata, Diag. 113 y 64, 1900 La Plata, Argentina
| | - M Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina
| | - Federico A O Rasse-Suriani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, Universidad Nacional de La Plata, Diag. 113 y 64, 1900 La Plata, Argentina
| | - Fernando S García Einschlag
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, Universidad Nacional de La Plata, Diag. 113 y 64, 1900 La Plata, Argentina
| | - Tobías Schmidt De León
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina.
| |
Collapse
|
26
|
Xu X, Jin L, Jiang T, Lu Y, Aosai F, Piao HN, Xu GH, Jin CH, Jin XJ, Ma J, Piao LX. Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway. J Ginseng Res 2019; 44:704-716. [PMID: 32913400 PMCID: PMC7471213 DOI: 10.1016/j.jgr.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ginsenoside Rh2 (GRh2) is a characterized component in red ginseng widely used in Korea and China. GRh2 exhibits a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, and anticancer properties. However, its effects on Toxoplasma gondii (T. gondii) infection have not been clarified yet. Methods The effect of GRh2 against T. gondii was assessed under in vitro and in vivo experiments. The BV2 cells were infected with tachyzoites of T. gondii RH strain, and the effects of GRh2 were evaluated by MTT assay, morphological observations, immunofluorescence staining, a trypan blue exclusion assay, reverse transcription PCR, and Western blot analyses. The in vivo experiment was conducted with BALB/c mice inoculated with lethal amounts of tachyzoites with or without GRh2 treatment. Results and conclusion The GRh2 treatment significantly inhibited the proliferation of T. gondii under in vitro and in vivo studies. Furthermore, GRh2 blocked the activation of microglia and specifically decreased the release of inflammatory mediators in response to T. gondii infection through TLR4/NF-κB signaling pathway. In mice, GRh2 conferred modest protection from a lethal dose of T. gondii. After the treatment, the proliferation of tachyzoites in the peritoneal cavity of infected mice markedly decreased. Moreover, GRh2 also significantly decreased the T. gondii burden in mouse brain tissues. These findings indicate that GRh2 exhibits an anti–T. gondii effect and inhibits the microglial activation through TLR4/NF-κB signaling pathway, providing the basic pharmacological basis for the development of new drugs to treat toxoplasmic encephalitis.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Tong Jiang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Ying Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
27
|
Choi WH, Lee IA. The Mechanism of Action of Ursolic Acid as a Potential Anti-Toxoplasmosis Agent, and Its Immunomodulatory Effects. Pathogens 2019; 8:pathogens8020061. [PMID: 31075881 PMCID: PMC6631288 DOI: 10.3390/pathogens8020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
28
|
β-Carboline derivatives as novel antivirals for herpes simplex virus. Int J Antimicrob Agents 2018; 52:459-468. [DOI: 10.1016/j.ijantimicag.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/06/2018] [Accepted: 06/30/2018] [Indexed: 11/21/2022]
|
29
|
Choi WH, Lee IA. Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals (Basel) 2018; 11:E43. [PMID: 29747388 PMCID: PMC6026977 DOI: 10.3390/ph11020043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
30
|
Survey on synergism effect of ketotifen in combination with pyrimethamine in treatment of acute murine toxoplasmosis. Trop Med Health 2017; 45:39. [PMID: 29200930 PMCID: PMC5697358 DOI: 10.1186/s41182-017-0079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/12/2017] [Indexed: 01/30/2023] Open
Abstract
Background Standard treatment of toxoplasmosis is accompanied by severe side effects and low tolerability; accordingly, alternative medicines are critically needed. Ketotifen (KET) as a cell membrane stabilizer could be an appropriate inhibitor of Toxoplasma gondii (T. gondii) parasite entrance into the host cells. Therefore, the focus of current study is characterization of the anti-Toxoplasma activity of KET in the acute phase of toxoplasmosis in murine model as pre-treatment and post-treatment (before and after infection with RH strain). KET was used intraperitoneally both individually (2 and 3 mg/kg/day) and in combination with pyrimethamine (PYR) (50 mg/kg/day). One week after the post infection, DNA was extracted from brain biopsies samples. Parasite load was calculated using Quantitative-PCR (Q-PCR) in a triplicate reaction for each DNA with the target for at RE (a 529 bp repeat element) gene. Results A significant difference between KET and control groups was observed (P < 0.001) in the pre-treatment and post-treatment groups. Both KET and the combination of KET and PYR showed a reduction in the parasite load in brain through the acute phase of the infection. 2 mg/kg/day dose of KET resulted in higher anti-Toxoplasma activity (15,698 parasites/ml) compared to 3 mg/kg/day dose of KET (72,898 parasites/ml) in brain in the pre-treatment group. In addition, KET combined with PYR significantly decreased the parasite load in the post-treatment group. Conclusions Our results indicated that KET has both prophylactic and therapeutic effects on acute phases of the disease.
Collapse
|
31
|
Yañuk JG, Alomar ML, Gonzalez MM, Alonso AM, Angel SO, Coceres VM, Cabrerizo FM. A comprehensive analysis of direct and photosensitized attenuation of Toxoplasma gondii tachyzoites. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 177:8-17. [PMID: 29031212 DOI: 10.1016/j.jphotobiol.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
In the present work, we have evaluated the effect of three different types of radiation: UVC (254±5nm), UVA (365±20nm) and visible (420±20nm) on different morphological and biological functions of Toxoplasma gondii tachyzoites. Briefly, UVC and UVA showed an inhibitory effect on parasite invasion in a dose-dependent manner. UVC showed the strongest effect inducing both structural damage (antigens) and functional inhibition (i.e., invasion and replication). On its own, visible light induces a quite distinctive and selective pattern of parasite-attenuation. This type of incident radiation inhibits the replication of the parasite affecting neither the capability of invasion/attachment nor the native structure of proteins (antigens) on parasites. Such effects are a consequence of photosensitized processes where phenol red might act as the active photosensitizer. The potential uses of the methodologies investigated herein are discussed.
Collapse
Affiliation(s)
- Juan G Yañuk
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - M Lis Alomar
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - M Micaela Gonzalez
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Andrés M Alonso
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Verónica M Coceres
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Franco M Cabrerizo
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
32
|
Maisuls I, Wolcan E, Piro OE, Castellano EE, Petroselli G, Erra-Balsells R, Cabrerizo FM, Ruiz GT. Synthesis, Structural Characterization and Biological Evaluation of Rhenium(I) Tricarbonyl Complexes with β-Carboline Ligands. ChemistrySelect 2017. [DOI: 10.1002/slct.201701961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Iván Maisuls
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
- IIB-INTECH - UNSAM-CONICET; I. Marino Km 8,2. CC 164 7130 Chascomús, Buenos Aires Argentina
| | - Ezequiel Wolcan
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
| | - Oscar E. Piro
- Instituto IFLP (CCT La Plata-CONICET) y Depto. de Física; FCE-UNLP, C.C. 67; 1900 La Plata Argentina
| | | | - Gabriela Petroselli
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN; UBA, Pabellón II, 3er P., Ciudad Universitaria; (1428) Buenos Aires Argentina
| | - Rosa Erra-Balsells
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN; UBA, Pabellón II, 3er P., Ciudad Universitaria; (1428) Buenos Aires Argentina
| | - Franco M. Cabrerizo
- IIB-INTECH - UNSAM-CONICET; I. Marino Km 8,2. CC 164 7130 Chascomús, Buenos Aires Argentina
| | - Gustavo T. Ruiz
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
| |
Collapse
|
33
|
Rasse-Suriani FAO, García-Einschlag FS, Rafti M, Schmidt De León T, David Gara PM, Erra-Balsells R, Cabrerizo FM. Photophysical and Photochemical Properties of Naturally Occurring nor
melinonine F and Melinonine F Alkaloids and Structurally Related N(2)- and/or N(9)-methyl-β
-carboline Derivatives. Photochem Photobiol 2017; 94:36-51. [DOI: 10.1111/php.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/02/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Federico A. O. Rasse-Suriani
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Chascomús Argentina
- INIFTA - CONICET; Universidad Nacional de La Plata; La Plata Argentina
| | | | - Matías Rafti
- INIFTA - CONICET; Universidad Nacional de La Plata; La Plata Argentina
| | - Tobías Schmidt De León
- Facultad de Ciencias Exactas y Naturales; Departamento de Química Orgánica; Universidad de Buenos Aires; Ciudad Universitaria Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR - CONICET); Universidad de Buenos Aires; Ciudad Universitaria Buenos Aires Argentina
| | - Pedro M. David Gara
- Centro de Investigaciones Ópticas (CIOP - CONICET - CIC); Universidad Nacional de La Plata; La Plata Argentina
| | - Rosa Erra-Balsells
- Facultad de Ciencias Exactas y Naturales; Departamento de Química Orgánica; Universidad de Buenos Aires; Ciudad Universitaria Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR - CONICET); Universidad de Buenos Aires; Ciudad Universitaria Buenos Aires Argentina
| | - Franco M. Cabrerizo
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Chascomús Argentina
| |
Collapse
|
34
|
Olmedo GM, Cerioni L, González MM, Cabrerizo FM, Rapisarda VA, Volentini SI. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea. Food Microbiol 2017; 62:9-14. [DOI: 10.1016/j.fm.2016.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 08/11/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
|
35
|
Olmedo GM, Cerioni L, González MM, Cabrerizo FM, Volentini SI, Rapisarda VA. UVA Photoactivation of Harmol Enhances Its Antifungal Activity against the Phytopathogens Penicillium digitatum and Botrytis cinerea. Front Microbiol 2017; 8:347. [PMID: 28326067 PMCID: PMC5339243 DOI: 10.3389/fmicb.2017.00347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 11/15/2022] Open
Abstract
Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables cause important economic losses. We have previously reported that harmol (1-methyl-9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol was characterized in terms of pH dependency and conidial targets; also photodynamic effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was able to inhibit the growth of both post-harvest fungal disease agents only in acidic conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization. All these deleterious effects were more evident for B. cinerea in comparison to P. digitatum. When conidial suspensions were irradiated with UVA in the presence of harmol, antimicrobial activity against both pathogens was enhanced, compared to non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated treatments. P. digitatum showed a significant increase in ROS accumulation only when treated with photoexcited harmol. The present work contributes to unravel the antifungal activity of harmol and its photoexcited counterpart against phytopathogenic conidia, focusing on ROS accumulation which could account for damage on different cellular targets.
Collapse
Affiliation(s)
- Gabriela M. Olmedo
- INSIBIO (CONICET, UNT), Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNTTucumán, Argentina
| | - Luciana Cerioni
- INSIBIO (CONICET, UNT), Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNTTucumán, Argentina
| | | | | | - Sabrina I. Volentini
- INSIBIO (CONICET, UNT), Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNTTucumán, Argentina
| | - Viviana A. Rapisarda
- INSIBIO (CONICET, UNT), Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNTTucumán, Argentina
| |
Collapse
|
36
|
Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006-2016). Front Microbiol 2017; 8:25. [PMID: 28163699 PMCID: PMC5247447 DOI: 10.3389/fmicb.2017.00025] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006-2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Student Research Committee, Mazandaran University of Medical SciencesSari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences TehranIran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical SciencesTabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| |
Collapse
|
37
|
Human toxoplasmosis–Searching for novel chemotherapeutics. Biomed Pharmacother 2016; 82:677-84. [DOI: 10.1016/j.biopha.2016.05.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/22/2023] Open
|
38
|
Si K, Wei L, Yu X, Wu F, Li X, Li C, Cheng Y. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp Parasitol 2016; 166:68-74. [PMID: 27004468 DOI: 10.1016/j.exppara.2016.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii pathogen is a threat to human health that results in economic burden. Unfortunately, there are very few high-efficiency and low-toxicity drugs for toxoplasmosis in the clinic. (+)-Usnic acid derived from lichen species has been reported to have anti-inflammatory, antibacterial, anti-parasitology, and even anti-cancer activities. Herein, the systematic effect of (+)-usnic acid and (+)-usnic acid-liposome on toxoplasma were studied in vitro and in vivo. The viability of toxoplasma tachyzoite was assayed with trypan blue and Giemsa staining; while the invasive capability of tachyzoite to cardiofibroblasts was detected using Giemsa staining. The survival time of mice and the changes in tachyzoite ultrastructure were studied in vivo. The results showed that (+)-usnic acid inhibited the viability of tachyzoite; pretreatment with (+)-usnic acid significantly decreased the invasion of tachyzoite to cardiofibroblasts in vitro; (+)-usnic acid and (+)-usnic acid-liposome extensively prolonged the survival time of mice about 90.9% and 117%, respectively; and improved the ultrastructural changes of tachyzoite, especially in dense granules, rhoptries, endoplasmic reticulum, mitochondria and other membrane organelles. In summary, these results demonstrate that (+)-usnic acid and (+)-usnic acid-liposome with low toxicity have an inhibitory effect on the viability of toxoplasma tachyzoite, and mainly destructed membrane organelles which are connected with the virulence of toxoplasma. These findings provide the basis for further study and development of usnic acid as a potential agent for treating toxoplasmosis.
Collapse
Affiliation(s)
- Kaiwei Si
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Linlin Wei
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 West Five Road, Xi'an, 710004, PR China
| | - Xiaozhuo Yu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Feng Wu
- Center of Teaching Experiment for Postgraduate in Medicine, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Xiaoqi Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Chen Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Yanbin Cheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China.
| |
Collapse
|
39
|
Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp Parasitol 2016; 165:95-102. [PMID: 26993085 DOI: 10.1016/j.exppara.2016.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/07/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii (T. gondii) is an important pathogen which can causes serious public health problems. Since the current therapeutic drugs for toxoplasmosis present serious host toxicity, research on effective and new substances of relatively low toxicity is urgently needed. This study was carried out to evaluate the anti-parasitic effect of oxymatrine (OM) and matrine (ME) against T. gondii in vitro and in vivo. In our study, the anti-T. gondii activities of ME and OM were evaluated in vitro using cell counting kit-8 assay, morphological observation and trypan blue exclusion assay. In vivo, mice were sacrificed four days post-infection and ascites were drawn out to determine the extent of tachyzoite proliferation. Viscera indexes and liver biochemical parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH) and malondialdehyde (MDA), were examined to evaluate the toxicity of compounds to mice. As a result, OM and ME showed anti-T. gondii activity but low selectivity toxicity to HeLa cells. Both compounds also significantly decreased the number of tachyzoites in peritoneal cavity and recovered the levels of ALT, AST, GSH and MDA in liver. Moreover, the mice treated with OM or ME achieved better results in viscera index and survival rate than that of spiramycin. These results suggest that OM and ME are likely the sources of new drugs for toxoplasmosis, and further studies will be necessary to compare the efficacy of drug combination, as well as identify its action of mechanism.
Collapse
|
40
|
Wang H, Zhang H, Mi Y, Ju J, Chen Q, Zhang H. Expression, crystallization and preliminary X-ray analysis of McbB, a multifunctional enzyme involved in β-carboline skeleton biosynthesis. Acta Crystallogr F Struct Biol Commun 2014; 70:1402-5. [PMID: 25286949 PMCID: PMC4188089 DOI: 10.1107/s2053230x14018743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
β-Carboline alkaloids (βCs), with tricyclic pyrido[3,4-b]indole rings, have important pharmacological and therapeutic value. In the biosynthesis of βCs, the Pictet-Spengler (PS) cyclization reaction is responsible for the formation of ring structures. McbB is one of a few enzymes that are known to catalyse PS cyclization. It can also catalyse decarboxylation and oxidation. Here, the expression, crystallization and preliminary data analysis of McbB are reported. The crystals diffracted to 2.10 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 66.06, b = 85.48, c = 106.19 Å, α = 90.00, β = 106.77, γ = 90.00°. These results provide a basis for solving the crystal structure and elucidating the catalytic mechanism for McbB.
Collapse
Affiliation(s)
- Hua Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
| | - Huaidong Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
| | - Yanling Mi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, People’s Republic of China
| | - Qi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, People’s Republic of China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|
41
|
Vignoni M, Erra-Balsells R, Epe B, Cabrerizo FM. Intra- and extra-cellular DNA damage by harmine and 9-methyl-harmine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 132:66-71. [DOI: 10.1016/j.jphotobiol.2014.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/27/2013] [Accepted: 01/28/2014] [Indexed: 12/22/2022]
|
42
|
B-9-3, a novel β-carboline derivative exhibits anti-cancer activity via induction of apoptosis and inhibition of cell migration in vitro. Eur J Pharmacol 2013; 724:219-30. [PMID: 24380828 DOI: 10.1016/j.ejphar.2013.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022]
Abstract
Peganum harmala L is an important medicinal plant that has been used from ancient time due to its alkaloids rich of ß-carbolines. Harmane is a naturally occurring ß-carboline extracted from Peganum harmala L, that exhibits a wide range of biological, psychopharmacological, and toxicological actions. The synthesis of novel derivatives with high anti-cancer activity and less side effects is necessary. In the present study, B-9-3-a semi-synthetic compound that is formed of two harmane molecules bound by a butyl group-showed a strong anti-cancer activity against a human lung cancer cell line, a human breast cancer cell line, and a human colorectal carcinoma cell line. B-9-3 anti-proliferative effect followed a similar pattern in the three cell lines. This pattern includes a dose-dependent induction of apoptosis, or necroptosis as confirmed by Hoechst staining, flow cytometry and western blot analyses, and the inhibition of cancer cells migration that was shown to be dependent on the drug׳s concentration as well. Moreover, B-9-3 inhibited tube formation in human umbilical vascular endothelial cell line (HUVEC), which indicates an anti-angiogenesis activity in vitro. In summary, B-9-3, a semi-synthetic derivative of ß-carboline, has an anti-proliferative effect against tumor cells via induction of apoptosis and inhibition of cell migration.
Collapse
|