1
|
Asiimwe IG, Pirmohamed M. Drug-Drug-Gene Interactions in Cardiovascular Medicine. Pharmgenomics Pers Med 2022; 15:879-911. [PMID: 36353710 PMCID: PMC9639705 DOI: 10.2147/pgpm.s338601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease remains a leading cause of both morbidity and mortality worldwide. It is widely accepted that both concomitant medications (drug-drug interactions, DDIs) and genomic factors (drug-gene interactions, DGIs) can influence cardiovascular drug-related efficacy and safety outcomes. Although thousands of DDI and DGI (aka pharmacogenomic) studies have been published to date, the literature on drug-drug-gene interactions (DDGIs, cumulative effects of DDIs and DGIs) remains scarce. Moreover, multimorbidity is common in cardiovascular disease patients and is often associated with polypharmacy, which increases the likelihood of clinically relevant drug-related interactions. These, in turn, can lead to reduced drug efficacy, medication-related harm (adverse drug reactions, longer hospitalizations, mortality) and increased healthcare costs. To examine the extent to which DDGIs and other interactions influence efficacy and safety outcomes in the field of cardiovascular medicine, we review current evidence in the field. We describe the different categories of DDIs and DGIs before illustrating how these two interact to produce DDGIs and other complex interactions. We provide examples of studies that have reported the prevalence of clinically relevant interactions and the most implicated cardiovascular medicines before outlining the challenges associated with dealing with these interactions in clinical practice. Finally, we provide recommendations on how to manage the challenges including but not limited to expanding the scope of drug information compendia, interaction databases and clinical implementation guidelines (to include clinically relevant DDGIs and other complex interactions) and work towards their harmonization; better use of electronic decision support tools; using big data and novel computational techniques; using clinically relevant endpoints, preemptive genotyping; ensuring ethnic diversity; and upskilling of clinicians in pharmacogenomics and personalized medicine.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Potmešil P, Szotkowská R. Drug-induced liver injury after switching from tamoxifen to anastrozole in a patient with a history of breast cancer being treated for hypertension and diabetes. Ther Adv Chronic Dis 2020; 11:2040622320964152. [PMID: 33240477 PMCID: PMC7675855 DOI: 10.1177/2040622320964152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Anastrozole is a selective non-steroidal aromatase inhibitor that blocks the
conversion of androgens to estrogens in peripheral tissues. It is used as
adjuvant therapy for early-stage hormone-sensitive breast cancer in
postmenopausal women. Significant side effects of anastrozole include
osteoporosis and increased levels of cholesterol. To date, seven case reports on
anastrozole hepatotoxicity have been published. We report the case of an
81-year-old woman with a history of breast cancer, arterial hypertension, type 2
diabetes mellitus, hyperlipidemia, and chronic renal insufficiency. Four days
after switching hormone therapy from tamoxifen to anastrozole, icterus developed
along with a significant increase in liver enzymes (measured in the blood). The
patient was admitted to hospital, where a differential diagnosis of jaundice was
made and anastrozole was withdrawn. Subsequently, hepatic functions quickly
normalized. The observed liver injury was attributed to anastrozole since other
possible causes of jaundice were excluded. However, concomitant pharmacotherapy
could have contributed to the development of jaundice and hepatotoxicity, after
switching from tamoxifen to anastrozole since several the patient’s medications
were capable of inhibiting hepatobiliary transport of bilirubin, bile acids, and
metabolized drugs through inhibition of ATP-binding cassette proteins.
Telmisartan, tamoxifen, and metformin all block bile salt efflux pumps. The
efflux function of multidrug resistance protein 2 is known to be reduced by
telmisartan and tamoxifen and breast cancer resistance protein is known to be
inhibited by telmisartan and amlodipine. Moreover, the activity of
P-glycoprotein transporters are known to be decreased by telmisartan,
amlodipine, gliquidone, as well as the previously administered tamoxifen.
Finally, the role of genetic polymorphisms of cytochrome P450 enzymes and/or
drug transporters cannot be ruled out since the patient was not tested for
polymorphisms.
Collapse
Affiliation(s)
- Petr Potmešil
- Third Faculty of Medicine, Department of Pharmacology, Charles University, Prague, Czech Republic and Faculty of Medicine, Department of Pharmacology and Toxicology, Charles University, Pilsen, Czech Republic
| | - Radka Szotkowská
- 2nd Department of Internal Medicine, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Malki MA, Pearson ER. Drug-drug-gene interactions and adverse drug reactions. THE PHARMACOGENOMICS JOURNAL 2019; 20:355-366. [PMID: 31792369 PMCID: PMC7253354 DOI: 10.1038/s41397-019-0122-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
The economic and health burden caused by adverse drug reactions has increased dramatically in the last few years. This is likely to be mediated by increasing polypharmacy, which increases the likelihood for drug–drug interactions. Tools utilized by healthcare practitioners to flag potential adverse drug reactions secondary to drug–drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To date there have been limited published studies on impact of genetic variation on drug–drug interactions. In this review, we establish a detailed classification for pharmacokinetic drug–drug–gene interactions, and give examples from the literature that support this approach. The increasing availability of real-world drug outcome data linked to genetic bioresources is likely to enable the discovery of previously unrecognized, clinically important drug–drug–gene interactions.
Collapse
Affiliation(s)
- Mustafa Adnan Malki
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ewan Robert Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex Drug-Drug-Gene-Disease Interactions Involving Cytochromes P450: Systematic Review of Published Case Reports and Clinical Perspectives. Clin Pharmacokinet 2018; 57:1267-1293. [PMID: 29667038 DOI: 10.1007/s40262-018-0650-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug pharmacokinetics (PK) is influenced by multiple intrinsic and extrinsic factors, among which concomitant medications are responsible for drug-drug interactions (DDIs) that may have a clinical relevance, resulting in adverse drug reactions or reduced efficacy. The addition of intrinsic factors affecting cytochromes P450 (CYPs) activity and/or expression, such as genetic polymorphisms and diseases, may potentiate the impact and clinical relevance of DDIs. In addition, greater variability in drug levels and exposures has been observed when such intrinsic factors are present in addition to concomitant medications perpetrating DDIs. This variability results in poor predictability of DDIs and potentially dramatic clinical consequences. The present review illustrates the issue of complex DDIs using systematically searched published case reports of DDIs involving genetic polymorphisms, renal impairment, cirrhosis, and/or inflammation. Current knowledge on the impact of each of these factors on drug exposure and DDIs is summarized and future perspectives for the management of such complex DDIs in clinical practice are discussed, including the use of advanced Computerized Physician Order Entry (CPOE) systems, the development of model-based dose optimization strategies, and the education of healthcare professionals with respect to personalized medicine.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Luc Reny
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland.
| |
Collapse
|
5
|
Rocha KCE, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018; 14:613-624. [PMID: 29842801 DOI: 10.1080/17425255.2018.1482276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Statins are used in the treatment of dyslipidemia promoting primary and secondary prevention against detrimental cardiovascular events. ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters transport statins across the cell membrane. Differences in drug transporter tissue expression and activity contribute to variability in statin pharmacokinetics (PK) and response. Areas covered: The purpose of this review is to discuss factors impacting transporter expression and the effect this has on statin efficacy and safety. Previous studies have demonstrated that genetic polymorphisms, drug-drug interactions (DDI), nuclear receptors, and microRNAs affect statin PK and pharmacodynamics. Expert opinion: Genetic variants of ABCG2 and SLCO1B1 transporters affect statin PK and, as a result, the intended lipid-lowering response. However, the effect size is small, limiting its applicability in clinical practice. Furthermore, genetic variants do not totally explain the observed intervariability in statin response. Thus, it is likely that transcriptional and post-transcriptional regulation of drug transporters are also highly involved. Further studies are required to understand the contribution of each of these new factors in statin disposition and toxicity.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Beatriz Maria Veloso Pereira
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Alice Cristina Rodrigues
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
6
|
Jiang S, Venners SA, Li K, Hsu YH, Weinstock J, Zou Y, Pan F, Xu X. Effect modification by region in the associations of LEP G2548A and LEPR Q223R polymorphisms with statin-induced CK elevation. Oncotarget 2017; 8:107565-107576. [PMID: 29296187 PMCID: PMC5746089 DOI: 10.18632/oncotarget.22506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
We investigated the associations of LEP G2548A and LEPR Q223R polymorphisms with statin-induced creatine kinase (CK) elevation among Chinese patients with hyperlipidemia. A total of587 enrolled individuals were treated with 20 mg/d oral simvastatin for 8 consecutive weeks. Genotyping of LEP G2548A and LEPR Q223R were conducted using PCR-RFLP. Multiple regression analyses showed that, in the Dongzhi region only, patients carrying the LEP AA genotype had a significantly greater increase in CK levels compared to those carrying the AG+GG genotypes after four weeks (P = 0.004) and eight weeks (P < 0.001) consecutive simvastatin treatment. Patients were further divided into three groups based on the tertiles of the CK distribution. Compared to subjects in the lowest tertile of CK elevation, the adjusted relative odds of having the AG+GG genotypes among subjects in the highest tertile was 0.5 (95% CI, 0.3 to 0.7) and 0.4 (95% CI, 0.2 to 0.6) after the fourth and eighth weeks, respectively. The interaction terms between the Beijing or Dongzhi region and the LEP GA+AA genotypes were marginally significant for CK elevation at the fourth week (P = 0.057) and significant for CK elevation at the eighth week (P = 0.002). The adverse effect of the LEP G2548A polymorphism on increasing CK levels may be dependent on the environmental milieu. It suggests that lifestyle interventions might offset the side effects of simvastatin therapy among those with genetic susceptibility. Further research is needed to identify specific individual-level factors for clinical practice that modify the effect of genotype.
Collapse
Affiliation(s)
- Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kang Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Yi-Hsiang Hsu
- Institute for Aging Research, HSL and Harvard Medical School, Boston, MA, USA.,Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| |
Collapse
|
7
|
Chavan BB, Kalariya PD, Nimbalkar RD, Garg P, Srinivas R, Kumar Talluri MVN. Identification and characterization of fluvastatin metabolites in rats by UHPLC/Q-TOF/MS/MS and in silico toxicological screening of the metabolites. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:296-314. [PMID: 28295913 DOI: 10.1002/jms.3929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The present study reports the in vivo and in vitro identification and characterization of metabolites of fluvastatin, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor, using liquid chromatography-mass spectrometry (LC-MS). In vitro studies were conducted by incubating the drug with human liver microsomes and rat liver microsomes. In vivo studies were carried out by administration of the drug in the form of suspension to the Sprague-Dawley rats followed by collection of urine, faeces and blood at different time points up to 24 h. Further, samples were prepared by optimized sample preparation method, which includes freeze liquid extraction, protein precipitation and solid phase extraction. The extracted and concentrated samples were analysed using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry. A total of 15 metabolites were observed in urine, which includes hydroxyl, sulphated, desisopropyl, dehydrogenated, dehydroxylated and glucuronide metabolites. A few of the metabolites were also present in faeces and plasma samples. In in vitro studies, a few metabolites were observed that were also present in in vivo samples. All the metabolites were characterized using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry in combination with accurate mass measurement. Finally, in silico toxicity studies indicated that some of the metabolites show or possess carcinogenicity and skin sensitization. Several metabolites that were identified in rats are proposed to have toxicological significance on the basis of in silico evaluation. However, these metabolites are of no human relevance. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Balasaheb B Chavan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
8
|
Davies JT, Delfino SF, Feinberg CE, Johnson MF, Nappi VL, Olinger JT, Schwab AP, Swanson HI. Current and Emerging Uses of Statins in Clinical Therapeutics: A Review. Lipid Insights 2016; 9:13-29. [PMID: 27867302 PMCID: PMC5110224 DOI: 10.4137/lpi.s37450] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Statins, a class of cholesterol-lowering medications that inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, are commonly administered to treat atherosclerotic cardiovascular disease. Statin use may expand considerably given its potential for treating an array of cholesterol-independent diseases. However, the lack of conclusive evidence supporting these emerging therapeutic uses of statins brings to the fore a number of unanswered questions including uncertainties regarding patient-to-patient variability in response to statins, the most appropriate statin to be used for the desired effect, and the efficacy of statins in treating cholesterol-independent diseases. In this review, the adverse effects, costs, and drug–drug and drug–food interactions associated with statin use are presented. Furthermore, we discuss the pleiotropic effects associated with statins with regard to the onset and progression of autoimmune and inflammatory diseases, cancer, neurodegenerative disorders, strokes, bacterial infections, and human immunodeficiency virus. Understanding these issues will improve the prognosis of patients who are administered statins and potentially expand our ability to treat a wide variety of diseases.
Collapse
Affiliation(s)
- Jonathan T Davies
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Spencer F Delfino
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Chad E Feinberg
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Meghan F Johnson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Veronica L Nappi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Joshua T Olinger
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Anthony P Schwab
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hollie I Swanson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|