1
|
Kuesap J, Suphakhonchuwong N, Rungsihirunrat K. Genetic polymorphisms of Plasmodium vivax ookinete (sexual stage) surface proteins (Pvs25 and Pvs28) from Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105558. [PMID: 38244749 DOI: 10.1016/j.meegid.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Plasmodium vivax is the most geographically widespread malaria parasite in human presently. The ookinete surface proteins of sexual stage of malaria parasites, Pvs25 and Pvs28, are candidates for the transmission blocking vaccine. The antigenic variation in population might be barrier for vaccine development. The objective of this study was to investigate the genetic diversity of Pvs25 and Pvs28 in endemic areas of Thailand. P. vivax clinical isolates collected from Thai-neighboring border areas were analyzed using polymerase chain reaction and sequencing method. Three and 14 amino acid substitutions were observed in 43 Pvs25 and 48 Pvs28 sequences, respectively. Three haplotypes in Pvs25 and 14 haplotypes with 5-7 GSGGE/D tandem repeats in Pvs28 were identified. The nucleotide diversity of pvs25 (π = 0.00059) had lower level than pvs28 (π = 0.00517). Tajima's D value for both pvs25 and pvs28 genes were negative while no significant difference was found (P > 0.10). Low genetic diversity was found in pvs25 and pvs28 genes in Thailand. The finding of the most frequent amino acid substitutions was consistent with global isolates. Therefore, the data could be helpful in developing of effective transmission blocking vaccine in malaria endemic areas.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.
| | | | | |
Collapse
|
2
|
Guled BA, Na-Bangchang K, Chaijaroenkul W. Exploring genetic polymorphisms among Plasmodium vivax isolates from the Thai-Myanmar borders using circumsporozoite protein (pvcsp) and ookinete surface protein (pvs25) encoding genes. Parasitol Res 2024; 123:91. [PMID: 38200222 DOI: 10.1007/s00436-023-08104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Plasmodium vivax malaria cases remain high along the Thai-Myanmar and Thai-Cambodia borders. Plasmodium vivax circumsporozoite protein (pvcsp) and Plasmodium vivax ookinete surface protein (pvs25) genes are promising molecular markers of the genetic diversity of P. vivax. This study investigated the genetic diversity of pvcsp and pvs25 in P. vivax isolates collected from the Thai-Myanmar border. The DNA samples were amplified, and the genotypes were analyzed by PCR-RFLP and DNA sequencing. Pvcsp genotypes, VK210, VK247, and mixed types, were found in 203 (91.9%), 15 (6.8%), and 3 (1.3%) of the isolates, respectively. Twenty-four allelic variants were observed, of which a high prevalence of VK210E and VK247E were reported. Two pvcsp variants, VK210C and VK210M showed significantly higher parasite density (46,234 (1154-144,000) vs. 25,606 (1373-68,878), respectively). The genetic diversity of pvcsp along the Thai-Myanmar border during 2002-2015 showed dynamic changes with both positive and negative selection. The frequency and distribution of pvcsp pattern might be changed over time and might be other factors contributing to gene selection. Three amino acid substitutions of pvs25, i.e., E97Q, I130T, and Q131K, were investigated with frequencies of 10 (4.5%), 221 (100%), and 204 (92.3%) isolates, respectively. There was no association between parasite density and pvs25 polymorphisms. The frequency of pvs25 polymorphism was similar to that previously reported, with the absence of random mutation. In conclusion, the genetic variation of pvcsp was changed over times whereas the genetic diversity of pvs25 was limited; these variations would be helpful for further vaccine development against P. vivax malaria.
Collapse
Affiliation(s)
- Bashir Abdirahman Guled
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand.
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
4
|
Wang S, Tian P, Li S, Liu H, Guo X, Huang F. Genetic diversity of transmission-blocking vaccine candidate antigens Pvs25 and Pvs28 in Plasmodium vivax isolates from China. BMC Infect Dis 2022; 22:944. [PMID: 36527077 PMCID: PMC9755777 DOI: 10.1186/s12879-022-07931-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccines (TBVs) target the sexual stages of malaria parasites to reduce or interrupt the transmission cycle in human and mosquito populations. The genetic diversity of TBVs candidate antigens, Pvs25 and Pvs28, in Plasmodium vivax could provide evidence for the development of TBVs. METHODS Dry blood spots from P. vivax patients were collected from Dandong, Suining, Hainan, Nyingchi, Tengchong, and Yingjiang in China. The pvs25 and pvs28 genes were amplified and sequenced. The genetic diversity of pvs25 and pvs28 were analyzed using DNASTAR, MEGA6, and DnaSP 5.0 programs. RESULTS A total of 377 samples were collected, among which 324 and 272 samples were successfully amplified in the pvs25 and pvs28 genes, respectively. Eight haplotypes were identified in Pvs25, for which the predominant mutation was I130T with 100% prevalence. A variety of 22 haplotypes in Pvs28 were identified. The number of GSGGE/D repeats of Pvs28 was a range of 4-8, among which, high (7-8) and low (4-5) copy numbers of tandem repeats were found in haplotypes H2 and H17, respectively. The nucleotide diversity of pvs28 (π = 0.00305 ± 0.00061) was slightly higher than that of pvs25 (π = 0.00146 ± 0.00007), thus they were not significantly different (P > 0.05). The Tajima's D value of pvs25 was positive whereas pvs28 was negative, which indicated that both genes were affected by natural selection. CONCLUSION The genetic diversity of pvs25 and pvs28 genes in China was relatively limited, which provided valuable information for TBVs design and optimization.
Collapse
Affiliation(s)
- Siqi Wang
- grid.198530.60000 0000 8803 2373National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China ,grid.508378.1Chinese Center for Tropical Diseases Research, Shanghai, 200025 China ,grid.508378.1NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China ,grid.508378.1WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 China
| | - Peng Tian
- grid.464500.30000 0004 1758 1139Yunnan Institute of Parasitic Diseases, Pu’er, 665000 China
| | - Shigang Li
- Yingjiang County Center for Disease Control and Prevention, Yingjiang, 679300 China
| | - Hui Liu
- grid.464500.30000 0004 1758 1139Yunnan Institute of Parasitic Diseases, Pu’er, 665000 China
| | - Xiangrui Guo
- Yingjiang County Center for Disease Control and Prevention, Yingjiang, 679300 China
| | - Fang Huang
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336 China
| |
Collapse
|
5
|
Ochwedo KO, Onyango SA, Omondi CJ, Orondo PW, Ondeto BM, Lee MC, Atieli HE, Ogolla SO, Githeko AK, Otieno ACA, Mukabana WR, Yan G, Zhong D, Kazura JW. Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya. PLoS One 2022; 17:e0266394. [PMID: 35390042 PMCID: PMC8989228 DOI: 10.1371/journal.pone.0266394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Leading transmission-blocking vaccine candidates such as Plasmodium falciparum surface protein 25 (Pfs25 gene) may undergo antigenic alterations which may render them ineffective or allele-specific. This study examines the level of genetic diversity, signature of selection and drivers of Pfs25 polymorphisms of parasites population in regions of western Kenya with varying malaria transmission intensities. METHODS Dry blood spots (DBS) were collected in 2018 and 2019 from febrile outpatients with malaria at health facilities in malaria-endemic areas of Homa Bay, Kisumu (Chulaimbo) and the epidemic-prone highland area of Kisii. Parasites DNA were extracted from DBS using Chelex method. Species identification was performed using real-time PCR. The 460 base pairs (domains 1-4) of the Pfs25 were amplified and sequenced for a total of 180 P. falciparum-infected blood samples. RESULTS Nine of ten polymorphic sites were identified for the first time. Overall, Pfs25 exhibited low nucleotide diversity (0.04×10-2) and low mutation frequencies (1.3% to 7.7%). Chulaimbo had the highest frequency (15.4%) of mutated sites followed by Kisii (6.7%) and Homa Bay (5.1%). Neutrality tests of Pfs25 variations showed significant negative values of Tajima's D (-2.15, p<0.01) and Fu's F (-10.91, p<0.001) statistics tests. Three loci pairs (123, 372), (364, 428) and (390, 394) were detected to be under linkage disequilibrium and none had history of recombination. These results suggested that purifying selection and inbreeding might be the drivers of the observed variation in Pfs25. CONCLUSION Given the low level of nucleotide diversity, it is unlikely that a Pfs25 antigen-based vaccine would be affected by antigenic variations. However, continued monitoring of Pfs25 immunogenic domain 3 for possible variants that might impact vaccine antibody binding is warranted.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
6
|
Ford A, Kepple D, Williams J, Kolesar G, Ford CT, Abebe A, Golassa L, Janies DA, Yewhalaw D, Lo E. Gene Polymorphisms Among Plasmodium vivax Geographical Isolates and the Potential as New Biomarkers for Gametocyte Detection. Front Cell Infect Microbiol 2022; 11:789417. [PMID: 35096643 PMCID: PMC8793628 DOI: 10.3389/fcimb.2021.789417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
The unique biological features of Plasmodium vivax not only make it difficult to control but also to eliminate. For the transmission of the malaria parasite from infected human to the vector, gametocytes play a major role. The transmission potential of a malarial infection is inferred based on microscopic detection of gametocytes and molecular screening of genes in the female gametocytes. Microscopy-based detection methods could grossly underestimate the reservoirs of infection as gametocytes may occur as submicroscopic or as micro- or macro-gametocytes. The identification of genes that are highly expressed and polymorphic in male and female gametocytes is critical for monitoring changes not only in their relative proportions but also the composition of gametocyte clones contributing to transmission over time. Recent transcriptomic study revealed two distinct clusters of highly correlated genes expressed in the P. vivax gametocytes, indicating that the male and female terminal gametocytogeneses are independently regulated. However, the detective power of these genes is unclear. In this study, we compared genetic variations of 15 and 11 genes expressed, respectively, in the female and male gametocytes among P. vivax isolates from Southeast Asia, Africa, and South America. Further, we constructed phylogenetic trees to determine the resolution power and clustering patterns of gametocyte clones. As expected, Pvs25 (PVP01_0616100) and Pvs16 (PVP01_0305600) expressed in the female gametocytes were highly conserved in all geographical isolates. In contrast, genes including 6-cysteine protein Pvs230 (PVP01_0415800) and upregulated in late gametocytes ULG8 (PVP01_1452800) expressed in the female gametocytes, as well as two CPW-WPC family proteins (PVP01_1215900 and PVP01_1320100) expressed in the male gametocytes indicated considerably high nucleotide and haplotype diversity among isolates. Parasite samples expressed in male and female gametocyte genes were observed in separate phylogenetic clusters and likely represented distinct gametocyte clones. Compared to Pvs25, Pvs230 (PVP01_0415800) and a CPW-WPC family protein (PVP01_0904300) showed higher expression in a subset of Ethiopian P. vivax samples. Thus, Pvs230, ULG8, and CPW-WPC family proteins including PVP01_0904300, PVP01_1215900, and PVP01_1320100 could potentially be used as novel biomarkers for detecting both sexes of P. vivax gametocytes in low-density infections and estimating transmission reservoirs.
Collapse
Affiliation(s)
- Anthony Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States
| | - Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Gabrielle Kolesar
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Colby T Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Abnet Abebe
- Department of Parasitology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel A Janies
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia.,School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC, United States.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
7
|
Oduma CO, Koepfli C. Plasmodium falciparum and Plasmodium vivax Adjust Investment in Transmission in Response to Change in Transmission Intensity: A Review of the Current State of Research. Front Cell Infect Microbiol 2021; 11:786317. [PMID: 34956934 PMCID: PMC8692836 DOI: 10.3389/fcimb.2021.786317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria parasites can adjust the proportion of parasites that develop into gametocytes, and thus the probability for human-to-vector transmission, through changes in the gametocyte conversion rate. Understanding the factors that impact the commitment of malaria parasites to transmission is required to design better control interventions. Plasmodium spp. persist across countries with vast differences in transmission intensities, and in sites where transmission is highly seasonal. Mounting evidence shows that Plasmodium spp. adjusts the investment in transmission according to seasonality of vector abundance, and transmission intensity. Various techniques to determine the investment in transmission are available, i.e., short-term culture, where the conversion rate can be measured most directly, genome and transcriptome studies, quantification of mature gametocytes, and mosquito feeding assays. In sites with seasonal transmission, the proportion of gametocytes, their densities and infectivity are higher during the wet season, when vectors are plentiful. When countries with pronounced differences in transmission intensity were compared, the investment in transmission was higher when transmission was low, thus maximizing the parasite’s chances to be transmitted to mosquitoes. Increased transmissibility of residual infections after a successful reduction of malaria transmission levels need to be considered when designing intervention measures.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
8
|
Li D, Yu C, Guo J, Wang Y, Zhao Y, Wang L, Soe MT, Feng H, Kyaw MP, Sattabongkot J, Jiang L, Cui L, Zhu X, Cao Y. Plasmodium vivax HAP2/GCS1 gene exhibits limited genetic diversity among parasite isolates from the Greater Mekong Subregion. Parasit Vectors 2020; 13:175. [PMID: 32264948 PMCID: PMC7137254 DOI: 10.1186/s13071-020-04050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Background Antigens expressed in sexual stages of the malaria parasites are targets of transmission-blocking vaccines (TBVs). HAP2/GCS1, a TBV candidate, is critical for fertilization in Plasmodium. Here, the genetic diversity of PvHAP2 was studied in Plasmodium vivax parasite populations from the Greater Mekong Subregion (GMS). Methods Plasmodium vivax clinical isolates were collected in clinics from the China-Myanmar border region (135 samples), western Thailand (41 samples) and western Myanmar (51 samples). Near full-length Pvhap2 (nucleotides 13–2574) was amplified and sequenced from these isolates. Molecular evolution studies were conducted to evaluate the genetic diversity, selection and population differentiation. Results Sequencing of the pvhap2 gene for a total of 227 samples from the three P. vivax populations revealed limited genetic diversity of this gene in the GMS (π = 0.00036 ± 0.00003), with the highest π value observed in Myanmar (0.00053 ± 0.00009). Y133S was the dominant mutation in the China-Myanmar border (99.26%), Myanmar (100%) and Thailand (95.12%). Results of all neutrality tests were negative for all the three populations, suggesting the possible action of purifying selection. Codon-based tests identified specific codons which are under purifying or positive selections. Wright’s fixation index showed low to moderate genetic differentiation of P. vivax populations in the GMS, with FST ranging from 0.04077 to 0.24833, whereas high levels of genetic differentiation were detected between the China-Myanmar border and Iran populations (FST = 0.60266), and between Thailand and Iran populations (FST = 0.44161). A total of 20 haplotypes were identified, with H2 being the abundant haplotype in China-Myanmar border, Myanmar and Thailand populations. Epitope mapping prediction of Pvhap2 antigen showed that high-score B-cell epitopes are located in the S307-G324, L429-P453 and V623-D637 regions. The E317K and D637N mutations located within S307-G324 and V623-D637 epitopes slightly reduced the predicted score for potential epitopes. Conclusions The present study showed a very low level of genetic diversity of pvhap2 gene among P. vivax populations in the Greater Mekong Subregion. The relative conservation of pvhap2 supports further evaluation of a Pvhap2-based TBV.![]()
Collapse
Affiliation(s)
- Danni Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Chunyun Yu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji School of Medicine, Shanghai, People's Republic of China
| | - Yazhou Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Hui Feng
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
9
|
Lê HG, Kang JM, Jun H, Lee J, Moe M, Thái TL, Lin K, Myint MK, Yoo WG, Sohn WM, Kim TS, Na BK. Genetic diversity and natural selection of transmission-blocking vaccine candidate antigens Pvs25 and Pvs28 in Plasmodium vivax Myanmar isolates. Acta Trop 2019; 198:105104. [PMID: 31336059 DOI: 10.1016/j.actatropica.2019.105104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 11/15/2022]
Abstract
Transmission-blocking vaccines (TBVs) target the sexual stages of malarial parasites to interrupt or reduce the transmission cycle have been one of approaches to control malaria. Pvs25 and Pvs28 are the leading candidate antigens of TBVs against vivax malaria. In this study, genetic diversity and natural selection of the two TBV candidate genes in Plasmodium vivax Myanmar isolates were analyzed. The 62 Myanmar P. vivax isolates showed 9 and 19 different haplotypes for Pvs25 and Pvs28, respectively. The nucleotide diversity of Pvs28 was slightly higher than Pvs25, but not significant. Most amino acid substitutions observed in Myanmar Pvs25 and Pvs28 were concentrated at the EGF-2 and EGF-3 like domains. Major amino acid changes found in Myanmar Pvs25 and Pvs28 were similar to those reported in the global population, but novel amino acid substitutions were also identified. Negative selection was predicted in Myanmar Pvs25, whereas Pvs28 was under positive selection. Comparative analysis of global Pvs25 and Pvs28 suggests a substantial geographical difference between the Asian and American/African Pvs25 and Pvs28. The geographical genetic differentiation and the evidence for natural selection in global Pvs25 and Pvs28 suggest that the functional consequences of the observed polymorphism need to be considered for the development of effective TBVs based on the antigens.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea; BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea; BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Hojong Jun
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Mya Moe
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar.
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea; BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar.
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar.
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea.
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea; BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
10
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bharti PK, Bansal D, Mohapatra PK, Mahanta J, Sultan AA. Exploration of genetic diversity of Plasmodium vivax circumsporozoite protein (Pvcsp) and Plasmodium vivax sexual stage antigen (Pvs25) among North Indian isolates. Malar J 2019; 18:308. [PMID: 31492135 PMCID: PMC6731556 DOI: 10.1186/s12936-019-2939-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the important vector-borne diseases with high fatality rates in tropical countries. The pattern of emergence and spread of novel antigenic variants, leading to escape of vaccine-induced immunity might be factors responsible for severe malaria. A high level of polymorphism has been reported among malarial antigens which are under selection pressure imposed by host immunity. There are limited reports available on comparative stage-specific genetic diversity among Plasmodium vivax candidate genes in complicated vivax malaria. The present study was planned to study genetic diversity (Pvcsp and Pvs25) among complicated and uncomplicated P. vivax isolates. METHODS Pvcsp and Pvs2-specific PCRs and DNA sequencing were performed on P. vivax PCR positive samples. Genetic diversity was analysed using appropriate software. RESULTS The present study was carried out on 143 P. vivax clinical isolates, collected from Postgraduate Institute of Medical Education and Research, Chandigarh. Among the classic and variant types of Pvcsp, the VK210 (99%; 115/116) was found to be predominant in both complicated and uncomplicated group isolates. Out of the various peptide repeat motifs (PRMs) observed, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) was the most widely distributed among the P. vivax isolates. Whereas among the Pvs25 isolates, 100% of double mutants (E97Q/I130T) in both the complicated (45/45) as well as in the uncomplicated (81/81) group was observed. CONCLUSION An analysis of genetic variability enables an understanding of the role of genetic variants in severe vivax malaria.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Nagpur Road, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar.,Ministry of Public Health, Doha, Qatar
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Post Box no.105, Dibrugarh, Assam, India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
11
|
Chaves LB, Perce-da-Silva DDS, Totino PRR, Riccio EKP, Baptista BDO, de Souza ABL, Rodrigues-da-Silva RN, Machado RLD, de Souza RM, Daniel-Ribeiro CT, Banic DM, Pratt-Riccio LR, Lima-Junior JDC. Plasmodium vivax ookinete surface protein (Pvs25) is highly conserved among field isolates from five different regions of the Brazilian Amazon. INFECTION GENETICS AND EVOLUTION 2019; 73:287-294. [DOI: 10.1016/j.meegid.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
|
12
|
Huang YM, Shi LW, She R, Bai J, Jiao SY, Guo Y. Domestic trends in malaria research and development in China and its global influence. Infect Dis Poverty 2017; 6:4. [PMID: 28069075 PMCID: PMC5223349 DOI: 10.1186/s40249-016-0222-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background Though many countries, including China, are moving towards malaria elimination, malaria remains a major global health threat. Due to the spread of antimalarial drug resistance and the need for innovative medical products during the elimination phase, further research and development (R&D) of innovative tools in both epidemic and elimination areas is needed. This study aims to identify the trends and gaps in malaria R&D in China, and aims to offer suggestions on how China can be more effectively involved in global malaria R&D. Methods Quantitative analysis was carried out by collecting data on Chinese malaria-related research programmes between 1985 and 2014, invention patents in China from 1985 to 2014, and articles published by Chinese researchers in PubMed and Chinese databases from 2005 to 2014. All data were screened and extracted for numerical analysis and were categorized into basic sciences, drug/drug resistance, immunology/vaccines, or diagnostics/detection for chronological and subgroup comparisons. Results The number of malaria R&D activities have shown a trend of increase during the past 30 years, however these activities have fluctuated within the past few years. During the past 10 years, R&D on drug/drug resistance accounted for the highest percentages of research programmes (32.4%), articles (55.0% in PubMed and 50.6% in Chinese databases) and patents (45.5%). However, these R&D activities were mainly related to artemisinin. R&D on immunology/vaccines has been a continuous interest for China’s public entities, but the focus remains on basic science. R&D in the area of high-efficiency diagnostics has been rarely seen or reported in China. Conclusions China has long been devoted to malaria R&D in multiple areas, including drugs, drug resistance, immunology and vaccines. R&D on diagnostics has received significantly less attention, however, it should also be an area where China can make a contribution. More focus on malaria R&D is needed, especially in the area of diagnostics, if China would like to contribute in a more significant way to global malaria control and elimination. Electronic supplementary material The online version of this article (doi:10.1186/s40249-016-0222-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang-Mu Huang
- School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Lu-Wen Shi
- School of Pharmaceutical Science, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Rui She
- School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Jing Bai
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Shi-Yong Jiao
- Patent Examination Cooperation Center of the Patent Office, SIPO, Beijing, China
| | - Yan Guo
- School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191, China.
| |
Collapse
|
13
|
Chaurio RA, Pacheco MA, Cornejo OE, Durrego E, Stanley CE, Castillo AI, Herrera S, Escalante AA. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Negl Trop Dis 2016; 10:e0004786. [PMID: 27347876 PMCID: PMC4922550 DOI: 10.1371/journal.pntd.0004786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/28/2016] [Indexed: 11/23/2022] Open
Abstract
Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. Plasmodium vivax is the most prevalent human malarial parasite outside Africa. The fact that patients can relapse due to the parasite dormant liver stages, among other biologic and epidemiologic characteristics of vivax malaria, facilitates the persistence of the disease in many endemic areas. These challenges have fueled the search for new control tools, including transmission blocking (TB) vaccines targeting the parasite sexual stages. Here we study the genetic diversity of two major TB vaccine antigens, Pvs25 and Pvs28. We show that these genes are relatively conserved worldwide but still harbor diversity that is not evenly distributed across the genes. These patterns are shared by the same proteins in closely related parasite species suggesting their functional importance. We also identify strong geographic differentiation between the circulating variants found in Asia and the Americas. Finally, evolutionary genetic analyses indicate that the observed variation in both genes could be maintained by natural selection. Thus, these polymorphisms may confer an adaptive advantage to the parasite. These results indicate that the genetic variation found in these genes and their geographic distribution should be considered by vaccine developers.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ester Durrego
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Craig E Stanley
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andreína I Castillo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Mehrizi AA, Dodangeh F, Zakeri S, Djadid ND. Worldwide population genetic analysis and natural selection in the Plasmodium vivax Generative Cell Specific 1 (PvGCS1) as a transmission-blocking vaccine candidate. INFECTION GENETICS AND EVOLUTION 2016; 43:50-7. [PMID: 27180894 DOI: 10.1016/j.meegid.2016.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/28/2022]
Abstract
GENERATIVE CELL SPECIFIC 1 (GCS1) is one of the Transmission Blocking Vaccine (TBV) candidate antigens, which is expressed on the surface of male gametocytes and gametes of Plasmodium species. Since antigenic diversity could inhibit the successful development of a malaria vaccine, it is crucial to determine the diversity of gcs1 gene in global malaria-endemic areas. Therefore, gene diversity and selection of gcs1 gene were analyzed in Iranian Plasmodium vivax isolates (n=52) and compared with the corresponding sequences from worldwide clinical P. vivax isolates available in PlasmoDB database. Totally 12 SNPs were detected in the pvgcs1 sequences as compared to Sal-1 sequence. Five out of 12 SNPs including three synonymous (T797C, G1559A, and G1667T) and two amino acid replacements (Y133S and Q634P) were detected in Iranian pvgcs1 sequences. According to four amino acid replacements (Y133S, N575S, Q634P and D637N) observed in all world PvGCS1 sequences, totally 5 PvGCS1 haplotypes were detected in the world, that three of them observed in Iranian isolates including the PvGCS-A (133S/634Q, 92.3%), PvGCS-B (133Y/634Q, 5.8%), and PvGCS-C (133S/634P, 1.9%). The overall nucleotide diversity (π) for all 52 sequences of Iranian pvgcs1 gene was 0.00018±0.00006, and the value of dN-dS (-0.00031) were negative, however, it was not statistically significant. In comparison with global isolates, Iranian and PNG pvgcs1 sequences had the lowest nucleotide and haplotype diversity, while the highest nucleotide and haplotype diversity was observed in China population. Moreover, epitope prediction in this antigen showed that all B-cell epitopes were located in conserved regions. However, Q634P (in one Iranian isolate) and D637N (observed in Thailand, China, Vietnam and North Korea) mutations are involved in predicted IURs. The obtained results in this study could be used in development of PvGCS1 based malaria vaccine.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Fatemeh Dodangeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran; Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
15
|
Vallejo AF, Martinez NL, Tobon A, Alger J, Lacerda MV, Kajava AV, Arévalo-Herrera M, Herrera S. Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45. Malar J 2016; 15:202. [PMID: 27067024 PMCID: PMC4828788 DOI: 10.1186/s12936-016-1263-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Background Plasmodium vivax 48/45 protein is expressed on the surface of gametocytes/gametes and plays a key role in gamete fusion during fertilization. This protein was recently expressed in Escherichia coli host as a recombinant product that was highly immunogenic in mice and monkeys and induced antibodies with high transmission-blocking activity, suggesting its potential as a P. vivax transmission-blocking vaccine candidate. To determine sequence polymorphism of natural parasite isolates and its potential influence on the protein structure, all pvs48/45 sequences reported in databases from around the world as well as those from low-transmission settings of Latin America were compared. Methods Plasmodium vivax parasite isolates from malaria-endemic regions of Colombia, Brazil and Honduras (n = 60) were used to sequence the Pvs48/45 gene, and compared to those previously reported to GenBank and PlasmoDB (n = 222). Pvs48/45 gene haplotypes were analysed to determine the functional significance of genetic variation in protein structure and vaccine potential. Results Nine non-synonymous substitutions (E35K, Y196H, H211N, K250N, D335Y, E353Q, A376T, K390T, K418R) and three synonymous substitutions (I73, T149, C156) that define seven different haplotypes were found among the 282 isolates from nine countries when compared with the Sal I reference sequence. Nucleotide diversity (π) was 0.00173 for worldwide samples (range 0.00033–0.00216), resulting in relatively high diversity in Myanmar and Colombia, and low diversity in Mexico, Peru and South Korea. The two most frequent substitutions (E353Q: 41.9 %, K250N: 39.5 %) were predicted to be located in antigenic regions without affecting putative B cell epitopes or the tertiary protein structure. Conclusions There is limited sequence polymorphism in pvs48/45 with noted geographical clustering among Asian and American isolates. The low genetic diversity of the protein does not influence the predicted antigenicity or protein structure and, therefore, supports its further development as transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - Jackeline Alger
- Facultad de Ciencias Médicas, Hospital Escuela Universitario, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Marcus V Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Andrey V Kajava
- Centre de Recherches Biochimie Macromoléculaire (CRBM), Institut de Biologie Computationnelle (IBC), CNRS, University of Montpellier, Montpellier, France.,Institute of Bioengineering, University ITMO, Saint Petersburg, Russia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia.,School of Health, Universidad del Valle, Cali, Colombia
| | | |
Collapse
|
16
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
17
|
Feng H, Gupta B, Wang M, Zheng W, Zheng L, Zhu X, Yang Y, Fang Q, Luo E, Fan Q, Tsuboi T, Cao Y, Cui L. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China. Parasit Vectors 2015; 8:615. [PMID: 26627683 PMCID: PMC4665908 DOI: 10.1186/s13071-015-1232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. Methods We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Results Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright’s fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Conclusions Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1232-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Bhavna Gupta
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| | - Meilian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Wenqi Zheng
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Yimei Yang
- Department of Parasitology, College of Basic Medical Sciences, Dali Medical College, Dali, Yunnan, China.
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui, China.
| | - Enjie Luo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China.
| | - Takafumi Tsuboi
- Cell-free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China. .,Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Chen SB, Ju C, Chen JH, Zheng B, Huang F, Xiao N, Zhou X, Ernest T, Zhou XN. Operational research needs toward malaria elimination in China. ADVANCES IN PARASITOLOGY 2014; 86:109-33. [PMID: 25476883 DOI: 10.1016/b978-0-12-800869-0.00005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to the implementation of a national malaria elimination programme from 2010 to 2020, we performed a systematic review to assess research challenges in the People's Republic of China (P.R. China) and define research priorities in the next few years. A systematic search was conducted for articles published from January 2000 to December 2012 in international journals from PubMed and Chinese journals from the China National Knowledge Infrastructure (CNKI). In total, 2532 articles from CNKI and 308 articles from PubMed published between 2010 and 2012 related to malaria after unrelated references and review or comment were further excluded, and a set of research gaps have been identified that could hinder progress toward malaria elimination in P.R. China. For example, there is a lack of sensitive and specific tests for the diagnosis of malaria cases with low parasitemia, and there is a need for surveillance tools that can evaluate the epidemic status for guiding the elimination strategy. Hence, we argue that malaria elimination will be accelerated in P.R. China through the development of new tests, such as detection of parasite or drug resistance, monitoring glucose-6-phosphate dehydrogenase (G6PD) deficiency, active malaria screening methods, and understanding the effects of the environment and climate variation on vector distribution.
Collapse
Affiliation(s)
- Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Chuan Ju
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Xia Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Tambo Ernest
- Center for Sustainable Malaria Control, Faculty of Natural and Environmental Science; Center for Sustainable Malaria Control, Biochemistry Department, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Kang JM, Ju HL, Moon SU, Cho PY, Bahk YY, Sohn WM, Park YK, Cha SH, Kim TS, Na BK. Limited sequence polymorphisms of four transmission-blocking vaccine candidate antigens in Plasmodium vivax Korean isolates. Malar J 2013; 12:144. [PMID: 23631662 PMCID: PMC3654915 DOI: 10.1186/1475-2875-12-144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/27/2013] [Indexed: 12/02/2022] Open
Abstract
Background Transmission-blocking vaccines (TBVs), which target the sexual stages of malaria parasites to interfere with and/or inhibit the parasite’s development within mosquitoes, have been regarded as promising targets for disrupting the malaria transmission cycle. In this study, genetic diversity of four TBV candidate antigens, Pvs25, Pvs28, Pvs48/45, and PvWARP, among Plasmodium vivax Korean isolates was analysed. Methods A total of 86 P. vivax-infected blood samples collected from patients in Korea were used for analyses. Each of the full-length genes encoding four TBV candidate antigens, Pvs25, Pvs28, Pvs48/45, and PvWARP, were amplified by PCR, cloned into T&A vector, and then sequenced. Polymorphic characteristics of the genes were analysed using the DNASTAR, MEGA4, and DnaSP programs. Results Polymorphism analyses of the 86 Korean P. vivax isolates revealed two distinct haplotypes in Pvs25 and Pvs48/45, and three different haplotypes in PvWARP. In contrast, Pvs28 showed only a single haplotype. Most of the nucleotide substitutions and amino acid changes identified in all four TBV candidate antigens were commonly found in P. vivax isolates from other geographic areas. The overall nucleotide diversities of the TBV candidates were much lower than those of blood stage antigens. Conclusions Limited sequence polymorphisms of TBV candidate antigens were identified in the Korean P. vivax population. These results provide baseline information for developing an effective TBV based on these antigens, and offer great promise for applications of a TBV against P. vivax infection in regions where the parasite is most prevalent.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Carlton JM, Das A, Escalante AA. Genomics, population genetics and evolutionary history of Plasmodium vivax. ADVANCES IN PARASITOLOGY 2013; 81:203-22. [PMID: 23384624 DOI: 10.1016/b978-0-12-407826-0.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax is part of a highly diverse clade that includes several Plasmodium species found in nonhuman primates from Southeast Asia. The diversity of primate malarias in Asia is staggering; nevertheless, their origin was relatively recent in the evolution of Plasmodium. We discuss how humans acquired the lineage leading to P. vivax from a nonhuman primate determined by the complex geological processes that took place in Southeast Asia during the last few million years. We conclude that widespread population genomic investigations are needed in order to understand the demographic processes involved in the expansion of P. vivax in the human populations. India represents one of the few countries with widespread vivax malaria. Earlier studies have indicated high genetic polymorphism at antigenic loci and no evidence for geographic structuring. However, new studies using genetic markers in selectively neutral genetic regions indicate that Indian P. vivax presents complex evolutionary history but possesses features consistent with being part of the ancestral distribution range of this species. Such studies are possible due to the availability of the first P. vivax genome sequences. Next generation sequencing technologies are now paving the way for the sequencing of more P. vivax genomes that will dramatically increase our understanding of the unique biology of this species.
Collapse
Affiliation(s)
- Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | | | | |
Collapse
|
21
|
Chen JH, Wang H, Chen JX, Bergquist R, Tanner M, Utzinger J, Zhou XN. Frontiers of parasitology research in the People's Republic of China: infection, diagnosis, protection and surveillance. Parasit Vectors 2012; 5:221. [PMID: 23036110 PMCID: PMC3497869 DOI: 10.1186/1756-3305-5-221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Control and eventual elimination of human parasitic diseases in the People's Republic of China (P.R. China) requires novel approaches, particularly in the areas of diagnostics, mathematical modelling, monitoring, evaluation, surveillance and public health response. A comprehensive effort, involving the collaboration of 188 scientists (>85% from P.R. China) from 48 different institutions and universities (80% from P.R. China), covers this collection of 29 articles published in Parasites & Vectors. The research mainly stems from a research project entitled “Surveillance and diagnostic tools for major parasitic diseases in P.R. China” (grant no. 2008ZX10004-011) and highlights the frontiers of research in parasitology. The majority of articles in this thematic series deals with the most important parasitic diseases in P.R. China, emphasizing Schistosoma japonicum, Plasmodium vivax and Clonorchis sinensis plus some parasites of emerging importance such as Angiostrongylus cantonensis. Significant achievements have been made through the collaborative research programme in the following three fields: (i) development of strategies for the national control programme; (ii) updating the surveillance data of parasitic infections both in human and animals; and (iii) improvement of existing, and development of novel, diagnostic tools to detect parasitic infections. The progress is considerable and warrants broad validation efforts. Combined with the development of improved tools for diagnosis and surveillance, integrated and multi-pronged control strategies should now pave the way for elimination of parasitic diseases in P.R. China. Experiences and lessons learned can stimulate control and elimination efforts of parasitic diseases in other parts of the world.
Collapse
Affiliation(s)
- Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|