1
|
Zhou Y, Yu H, Zhao X, Ni J, Gan S, Dong W, Du J, Zhou X, Wang X, Song H. Detection and differentiation of seven porcine respiratory pathogens using a multiplex ligation-dependent probe amplification assay. Vet J 2024; 305:106124. [PMID: 38653339 DOI: 10.1016/j.tvjl.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Respiratory diseases due to viral or bacterial agents, either alone or in combination, cause substantial economic burdens to the swine industry worldwide. Rapid and reliable detection of causal pathogens is crucial for effective epidemiological surveillance and disease management. This research aimed to employ the multiplex ligation-dependent probe amplification (MLPA) assay for simultaneous detection of seven distinct pathogens causing respiratory problems in swine, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV2), Pasteurella multocida, Actinobacillus pleuropneumoniae, and Glässerella parasuis. The results indicated no probe cross-reactivity among the seven target agents with other swine pathogens. The detection limits ranged from 5 to 34 copies per assay for the target organisms. The MLPA assay was evaluated with 88 samples and compared to real-time or multiplex PCR for the target pathogens. The MLPA assay demonstrated high relative test sensitivities (100 %) and reasonable to good relative specificities at 62.5 %, 95.1 %, 86.8 %, and 97.6 % for PRRSV, P. multocida, G. parasuis, and PCV2, respectively, relative to comparator PCR assays. In 71 samples where MLPA and comparator PCR assays matched exactly, infections were detected in 64 samples (90.1 %), with PRRSV being the most commonly found virus and 50.7 % of the samples showing co-infection with two to five of the pathogens. This approach serves as a valuable tool for conducting differential diagnoses and epidemiological investigations of pathogen prevalence within swine populations.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Haoran Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiuling Zhao
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Jianbo Ni
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Shiqi Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
2
|
Saijuntha W, Sithithaworn P, Wangboon C, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:239-284. [PMID: 39008268 DOI: 10.1007/978-3-031-60121-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Clonorchis sinensis, Opisthorchis viverrini and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts is important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes and hence contribute to reduction of CCA in endemic areas.
Collapse
Affiliation(s)
| | - Paiboon Sithithaworn
- Department of Parasitology and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Chompunoot Wangboon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ross H Andrews
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
3
|
Esteban JG, Muñoz-Antolí C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:541-582. [PMID: 39008275 DOI: 10.1007/978-3-031-60121-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In the present chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Lawrence R Ash
- Infectious & Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Khuntikeo N, Thinkhamrop B, Crellen T, Eamudomkarn C, Petney TN, Andrews RH, Sithithaworn P. Epidemiology and Control of Opisthorchis viverrini Infection: Implications for Cholangiocarcinoma Prevention. Recent Results Cancer Res 2023; 219:27-52. [PMID: 37660330 DOI: 10.1007/978-3-031-35166-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
It is known that Opisthorchis viverrini (OV) is the most significant risk factor for the development of cholangiocarcinoma (CCA); hence, it is also known as carcinogenic parasite. Effective control and elimination of OV infection should significantly reduce O. viverrini-related CCA. This chapter includes details of the three recently developed innovative tools, namely the Isan cohort database software, an OV-RDT for screening of O. viverrini, and an ultrasound telecommunication system. Past and current control programs, i.e., education, medication, and sanitation were discussed and stressed the need for a comprehensive control program which encompasses primary, secondary, and tertiary patient care programs for confirmation and management of suspected CCA cases. The approach of mathematical modeling for control of OV and CCA was also briefly described. Additionally, we highlighted the current progress toward control of OV and CCA in Thailand and potential for expansion into nearby countries in Southeast Asia.
Collapse
Affiliation(s)
- Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University and Cholangiocarcinoma Research Institute, Khon Kaen, Thailand
| | - Bandit Thinkhamrop
- Faculty of Public Health, Khon Kaen University and Cholangiocarcinoma Research Institute, Khon Kaen, Thailand
| | - Thomas Crellen
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, London, UK
| | - Chatanun Eamudomkarn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Trevor N Petney
- Evolution and Paleontology, State Museum of Natural History Karlsruhe, Erbprinzenstrasse 13, 76133, Karlsruhe, Germany
| | - Ross H Andrews
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University and Cholangiocarcinoma Research Institute, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Oh CS, Seo M, Lee HJ, Kim MJ, Lim DS, Shin DH. Genetic Analysis of Ancient Clonorchis sinensis Eggs Attained from Goryeong Mummy of Joseon Dynasty Period. J Parasitol 2022; 108:70-78. [DOI: 10.1645/21-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chang Seok Oh
- Department of Mortuary Science, College of Bio-convergence, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Korea
| | - Min Seo
- Department of Parasitology, Dankook University College of Medicine, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Hye Jin Lee
- Ministry of National Defense Agency for KIA Recovery & Identification, 250, Hyeonchung-ro, Dongjak-gu, Seoul 06984, Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Do-Seon Lim
- Department of Dental Hygiene, College of Health Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13135, Korea
| | - Dong Hoon Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103, Daehak-ro, Chongno-gu, Seoul 03080, Korea
| |
Collapse
|
6
|
Esteban JG, Muñoz-Antoli C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:437-471. [PMID: 31297770 DOI: 10.1007/978-3-030-18616-6_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver, and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods, and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In this chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain.
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Lawrence R Ash
- Infectious and Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Characterization of the mitochondrial genome sequences of the liver fluke Amphimerus sp. (Trematoda: Opisthorchiidae) from Ecuador and phylogenetic implications. Acta Trop 2019; 195:90-96. [PMID: 31022381 DOI: 10.1016/j.actatropica.2019.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/25/2023]
Abstract
Amphimerus Barker, 1911 is a liver fluke infecting several animal species and humans. Being a digenetic trematode of the Opisthorchiidae family, Amphimerus is closely related to the genera Metorchis, Clonorchis and Opisthorchis. Recently, a high prevalence of Amphimerus infection in humans, cats, and dogs had been demonstrated in a tropical Pacific region of Ecuador. Hence, we determined and characterized the entire mt genome sequences of adult liver flukes, morphologically identified as Amphimerus, collected in the endemic region of Ecuador, and examined its phylogenetic relationships with flukes in the Opisthorchiidae family using Bayesian inference (BI) based on the concatenated amino acid sequences and partial cox1 sequences. The complete mt genome sequence (15, 151 bp in length) of the Amphimerus sp. contains 35 genes, including 12 protein-coding genes (PCGs, without atp8), two rRNAs (rrnL and rrnS) and 21 tRNAs, lacking trnG. The gene content and arrangement of the Ecuadorian Amphimerus mt genome was similar to those of other trematodes in the Opisthorchiidae family. All genes in the circular mt genome of Amphimerus sp. are transcribed from the same strand in one direction, with the A + T content of 60.77%. Genetic distances between Amphimerus sp. and other genera in Opisthorchiidae were rather high, ranging from 26.86% to 28.75% at nucleotide level and 29.37%-31.12% at amino acid level. Phylogenetic analysis placed the Ecuadorian Amphimerus within the branch of Opisthorchiidae, but very distinct from Opisthorchis. Our results indicate that the liver fluke Amphimerus from Ecuador does not belong to the genus Opisthorchis, and that it should be assigned under the genus Amphimerus. The determination of the mt genome of the Ecuadorian Amphimerus provides a new genetic resource for future studies on taxonomy and molecular epidemiology of Opisthorchiidae trematodes.
Collapse
|
8
|
Zhang X, Sun B, Tang Q, Chen R, Han S. Molecular Identification and Phylogenetic Analysis of Nuclear rDNA Sequences of Clonorchis sinensis Isolates From Human Fecal Samples in Heilongjiang Province, China. Front Microbiol 2019; 10:26. [PMID: 30745896 PMCID: PMC6360181 DOI: 10.3389/fmicb.2019.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/09/2019] [Indexed: 01/14/2023] Open
Abstract
Studying the genetic diversity of parasite is important for understanding their biogeography and molecular epidemiology, as well as for establishing disease prevention and control strategies. Clonorchis sinensis is an important foodborne parasite worldwide. However, despite its epidemiological significance, the genetic diversity of C. sinensis has not been well studied from human in northeastern China. In this study, a total of 342 fecal specimens were collected from residents living in five villages in Heilongjiang Province and analyzed for the presence of C. sinensis by PCR amplification and sequencing of the internal transcribed spacer 1 (ITS1) and ITS2 regions of nuclear ribosomal DNA. 21.64% (74/342) of fecal samples were found to be positive for C. sinensis by PCR. The sequences of the ITS1 region in 34 of the 74 samples (45.95%) matched that of MK179278, Genetic polymorphisms were observed at six nucleotide sites. The ITS2 gene sequence of 37 of the 74 samples (50%) matched that of MK179281. In conclusion, a low degree of genetic diversity between C. sinensis isolates from China and different geographical regions was found at ITS loci. Despite this conservation, sequencing of the rDNA region has provided important data that will be useful for future studies addressing the molecular evolution, biology, medical implications and ecology of C. sinensis.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Beibei Sun
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Qiaoran Tang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Saijuntha W, Sithithaworn P, Kiatsopit N, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:139-180. [PMID: 31297762 DOI: 10.1007/978-3-030-18616-6_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics, and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts, are important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that a transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes, and hence contribute to reduction of cholangiocarcinoma in endemic areas.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ross H Andrews
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
10
|
Saijuntha W, Duenngai K, Tangkawattana S, Petney TN, Andrews RH, Sithithaworn P. Recent Advances in the Diagnosis and Detection of Opisthorchis viverrini Sensu Lato in Human and Intermediate Hosts for Use in Control and Elimination Programs. ADVANCES IN PARASITOLOGY 2018; 101:177-214. [PMID: 29907254 DOI: 10.1016/bs.apar.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opisthorchiasis is a neglected tropical disease, caused by infection with the fish-borne trematode Opisthorchis viverrini sensu lato that afflicts more than 10million people in Southeast Asia, including Thailand, Lao PDR, Vietnam and Cambodia. The disease is characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. This chronic inflammation eventually leads to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in approximately 1% of O. viverrini-infected individuals. In Thailand alone, CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce O. viverrini-associated morbidity and CCA, the primary intervention measures focus on opisthorchiasis control and elimination. Accurate diagnoses of O. viverrini infection, in both mammalian, snail and fish intermediate hosts, are important for achieving these goals. Despite extensive efforts over several decades to find sensitive and specific diagnostics for opisthorchiasis, a simple and robust diagnostic method is still required. Here we review earlier and current developments in the search for new diagnostics for opisthorchiasis, with practical applications in the research laboratory, the clinic and the field. Of the methods currently available, the urine antigen assay shows considerable potential for the diagnosis and screening of opisthorchiasis. Nevertheless, these new assays require validation, determination of their cost-effectiveness when applied for mass screening in an endemic setting in support of policy decisions for national public health programs aimed at the control and elimination of opisthorchiasis.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanyarat Duenngai
- Department of Public Health, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand
| | - Sirikachorn Tangkawattana
- Department of Vetrinary Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Trevor N Petney
- Cholangiocarcinoma Screening and Care Program (CASCAP) and Institute of Cholangiocarcinoma, Khon Kaen University, Khon Kaen, Thailand; Institute of Zoology 1: Ecology and Parasitology, Karlsruhe Institute of Technology, Karlsruhe, Germany; State Museum of Natural History Karlsruhe, Karlsruhe, Germany
| | - Ross H Andrews
- Cholangiocarcinoma Screening and Care Program (CASCAP) and Institute of Cholangiocarcinoma, Khon Kaen University, Khon Kaen, Thailand; Faculty of Medicine, St Mary's Campus, Imperial College, London, United Kingdom
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Screening and Care Program (CASCAP) and Institute of Cholangiocarcinoma, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. ADVANCES IN PARASITOLOGY 2018; 100:155-208. [PMID: 29753338 DOI: 10.1016/bs.apar.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets.
Collapse
|
12
|
Caffara M, Serracca L, Gustinelli A, Vencia W, Rossini I, Prearo M, Fioravanti ML. Development and validation of species-specific molecular diagnostic tool for Opisthorchis felineus (Digenea, Opisthorchiidae) metacercariae. Int J Food Microbiol 2016; 242:98-100. [PMID: 27914324 DOI: 10.1016/j.ijfoodmicro.2016.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/14/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Abstract
Opisthorchis felineus (family Opisthorchiidae) is a parasitic flatworm representing a serious threat to humans in some countries. Opisthorchiasis occurs after consumption of raw or undercooked cyprinid fish infected by the metacercarial stage of the parasite. Due to its small size, detection of the parasite in fish fillet is time-consuming and difficult. Furthermore, isolated metacercariae can be identified to genus but not to species level using morphological features and molecular techniques are necessary. In this work, we describe the development of primers for a diagnostic PCR amplification of a 254-bp fragment of the cytochrome c oxidase I in the mitochondrion of Opisthorchis felineus metacercariae isolated from fish fillet, together with a validation protocol for this method.
Collapse
Affiliation(s)
- Monica Caffara
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Laura Serracca
- Marine Microbiology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19136 La Spezia, Italy
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Walter Vencia
- Marine Microbiology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19136 La Spezia, Italy
| | - Irene Rossini
- Marine Microbiology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19136 La Spezia, Italy
| | - Marino Prearo
- Fish Diseases Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Turin, Italy
| | - Maria L Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
13
|
Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin Microbiol Rev 2016; 27:371-418. [PMID: 24696439 DOI: 10.1128/cmr.00122-13] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, nucleic acid-based methods have been developed for the diagnosis of intestinal parasitic infections. Advantages of nucleic acid-based methods are numerous; typically, these include increased sensitivity and specificity and simpler standardization of diagnostic procedures. DNA samples can also be stored and used for genetic characterization and molecular typing, providing a valuable tool for surveys and surveillance studies. A variety of technologies have been applied, and some specific and general pitfalls and limitations have been identified. This review provides an overview of the multitude of methods that have been reported for the detection of intestinal parasites and offers some guidance in applying these methods in the clinical laboratory and in epidemiological studies.
Collapse
|
14
|
Zhang Y, Chang QC, Zhang Y, Na L, Wang WT, Xu WW, Gao DZ, Liu ZX, Wang CR, Zhu XQ. Prevalence of Clonorchis sinensis infection in freshwater fishes in northeastern China. Vet Parasitol 2014; 204:209-13. [PMID: 24880648 DOI: 10.1016/j.vetpar.2014.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/16/2022]
Abstract
The prevalence of Clonorchis sinensis infection in freshwater fishes was surveyed in Heilongjiang Province, northeastern China, between August 2011 and September 2013. Thirteen species of freshwater fish (n=3221) and one species of shrimp (n=93) were collected from Songhua river, Nenjiang river and other lakes or ponds in 37 sites of 15 representative cities in Heilongjiang Province. They were individually examined by digestion technique, and the C. sinensis metacercariae were identified morphologically followed by confirmation using sequences of the second internal transcribed spacer of ribosomal DNA. Ten of the 13 examined species of freshwater fishes were infected with C. sinensis metacercariae, while all shrimps were negative. The overall prevalence of C. sinensis infection in 3221 examined freshwater fishes was 19.96%, with 42.57% (272/639) in Pseudorasbora parva, 22.55% (83/368) in Hemicculter leuciclus, 20.44% (121/592) in Carassius auratus, 17.71% (68/384) in Saurogobio dabryi, 10.85% (23/212) in Rhodeus ocellatus, 10.54% (48/455) in Phoxinus lagowskii, 8.20% (21/256) in Perccottus glehnii, 6.25% (5/80) in Misgurnus anguillicaudatus, 4.55% (1/22) in Xenocypris davidi, and 1.49% (1/67) in Cyprinus carpio. The average infection intensity in P. parva was 103.3 encysted metacercariae per gram of fish meat in Zhaoyuan city. The average prevalence of C. sinensis infection in Songhua river, Nenjiang river and lakes or ponds were 31.96% (503/1574), 11.30% (102/903) and 7.93% (59/744), respectively. The prevalence of C. sinensis infection in Zhaoyuan city (43.68%) was the highest among all sampling locations. These results revealed a high-prevalence of C. sinensis infection in freshwater fishes in Heilongjiang Province, northeastern China, posing significant public health concern.
Collapse
Affiliation(s)
- Y Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Q C Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Y Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - L Na
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - W T Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - W W Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - D Z Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Z X Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - C R Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| | - X Q Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
15
|
Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:293-327. [DOI: 10.1007/978-1-4939-0915-5_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Saijuntha W, Sithithaworn P, Kaitsopit N, Andrews RH, Petney TN. Liver flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:153-99. [PMID: 24903366 DOI: 10.1007/978-1-4939-0915-5_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand,
| | | | | | | | | |
Collapse
|
17
|
The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int J Parasitol 2013; 43:1031-46. [DOI: 10.1016/j.ijpara.2013.07.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
|
18
|
De Smet L, Ravoet J, de Miranda JR, Wenseleers T, Mueller MY, Moritz RFA, de Graaf DC. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS One 2012; 7:e47953. [PMID: 23144717 PMCID: PMC3483297 DOI: 10.1371/journal.pone.0047953] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Collapse
Affiliation(s)
- Lina De Smet
- Laboratory of Zoophysiology, Department of Physiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen JH, Wang H, Chen JX, Bergquist R, Tanner M, Utzinger J, Zhou XN. Frontiers of parasitology research in the People's Republic of China: infection, diagnosis, protection and surveillance. Parasit Vectors 2012; 5:221. [PMID: 23036110 PMCID: PMC3497869 DOI: 10.1186/1756-3305-5-221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Control and eventual elimination of human parasitic diseases in the People's Republic of China (P.R. China) requires novel approaches, particularly in the areas of diagnostics, mathematical modelling, monitoring, evaluation, surveillance and public health response. A comprehensive effort, involving the collaboration of 188 scientists (>85% from P.R. China) from 48 different institutions and universities (80% from P.R. China), covers this collection of 29 articles published in Parasites & Vectors. The research mainly stems from a research project entitled “Surveillance and diagnostic tools for major parasitic diseases in P.R. China” (grant no. 2008ZX10004-011) and highlights the frontiers of research in parasitology. The majority of articles in this thematic series deals with the most important parasitic diseases in P.R. China, emphasizing Schistosoma japonicum, Plasmodium vivax and Clonorchis sinensis plus some parasites of emerging importance such as Angiostrongylus cantonensis. Significant achievements have been made through the collaborative research programme in the following three fields: (i) development of strategies for the national control programme; (ii) updating the surveillance data of parasitic infections both in human and animals; and (iii) improvement of existing, and development of novel, diagnostic tools to detect parasitic infections. The progress is considerable and warrants broad validation efforts. Combined with the development of improved tools for diagnosis and surveillance, integrated and multi-pronged control strategies should now pave the way for elimination of parasitic diseases in P.R. China. Experiences and lessons learned can stimulate control and elimination efforts of parasitic diseases in other parts of the world.
Collapse
Affiliation(s)
- Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Sanpool O, Intapan PM, Thanchomnang T, Janwan P, Lulitanond V, Doanh PN, Van Hien H, Dung DT, Maleewong W, Nawa Y. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini eggs in human fecal samples using a duplex real-time fluorescence resonance energy transfer PCR and melting curve analysis. Parasitol Res 2012; 111:89-96. [PMID: 22246366 DOI: 10.1007/s00436-011-2804-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/21/2011] [Indexed: 12/27/2022]
Abstract
We developed a single step duplex real-time fluorescence resonance energy transfer (FRET) PCR merged with melting curve analysis for the fast detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini eggs in human fecal samples. Two species of mitochondrial NADH dehydrogenase subunit 2 (nad2) DNA elements, the 165-bp nad2 product of C. sinensis and the 209-bp nad2 product of O. viverrini, were amplified by species-specific primers, and the fluorescence melting curve analyses were generated from hybrid of amplicons and two pairs of species-specific fluorophore-labeled probes. By their different fluorescence channels and melting temperatures, both C. sinensis and O. viverrini eggs in infected human fecal samples were detected and differentiated with high (100%) sensitivity and specificity. Detection limit was as little as a single C. sinensis egg and two O. viverrini eggs in 100 mg of fecal sample. The assay could distinguish the DNA of both parasites from the DNA of negative fecal samples and fecal samples with other parasitosis, as well as from the well-defined genomic DNA of human leukocytes and other parasites. It can reduce labor time of microscopic examination and is not prone to carry over contamination of agarose electrophoresis. Our duplex real-time FRET PCR method would be useful to determine the accurate range of endemic areas and/or to discover the co-endemic areas of two liver flukes, C. sinensis and O. viverrini, in Asia. This method also would be helpful for the differential diagnosis of the suspected cases of liver fluke infections among travelers who had visited the endemic countries of those parasites.
Collapse
Affiliation(s)
- Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin RQ, Tang JD, Zhou DH, Song HQ, Huang SY, Chen JX, Chen MX, Zhang H, Zhu XQ, Zhou XN. Prevalence of Clonorchis sinensis infection in dogs and cats in subtropical southern China. Parasit Vectors 2011; 4:180. [PMID: 21929783 PMCID: PMC3183008 DOI: 10.1186/1756-3305-4-180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/19/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Clonorchiasis, caused by Clonorchis sinensis, is one of the major parasitic zoonoses in China, particularly in China's southern Guangdong province where the prevalence of C. sinensis infection in humans is high. However, little is known of the prevalence of C. sinensis infection in its reservoir hosts dogs and cats. Hence, the prevalence of C. sinensis infection in dogs and cats was investigated in Guangdong province, China between October 2006 and March 2008. RESULTS A total of 503 dogs and 194 cats from 13 administrative regions in Guangdong province were examined by post-mortem examination. The worms were examined, counted, and identified to species according to existing keys and descriptions. The average prevalences of C. sinensis infection in dogs and cats were 20.5% and 41.8%, respectively. The infection intensities in dogs were usually light, but in cats the infection intensities were more serious. The prevalences were higher in some of the cities located in the Pearl River Delta region which is the most important endemic area in Guangdong province, but the prevalences were relatively lower in seaside cities. CONCLUSIONS The present investigation revealed a high prevalence of C. sinensis infection in its reservoir hosts dogs and cats in China's subtropical Guangdong province, which provides relevant "base-line" data for conducting control strategies and measures against clonorchiasis in this region.
Collapse
Affiliation(s)
- Rui-Qing Lin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|