1
|
Asadi M, Babaei Z, Afgar A, Banabazi MH, ZiaAli N, Daryani A, Aghajani E, Mahdavi M, Attari M, Zarrinkar F. Brain -cyst-driven genes expression in Toxoplasma Gondii Tehran strain: a parasitic-immunogenicity assessment by dint of RNA-Seq. Vet Res Commun 2024; 48:2563-2581. [PMID: 38916691 DOI: 10.1007/s11259-023-10241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 06/26/2024]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite of warm-blooded vertebrates. At present, High-throughput RNA sequencing analysis have made it possible to determine the role of effective genes in host immune response. The aim of the present study is to global transcriptome analysis of the brain of mice infected with T. gondii Tehran strain for the first time and also to evaluate the expression of effective genes in the chronic form of infection. RNA was extracted from the samples and the library was prepared and sequenced using the IlluminaNovaSeq 6000 system. After analyzing gene expression changes, the results were confirmed by real-time method. We found 125 genes that were significantly differentially expressed between infected and non-infected samples (p < 0.0005). Gene ontology analysis revealed that the expression of many genes is critical for pathways such as T cell receptor signaling pathway, Natural Killer cell mediated cytotoxicity, Lysosome and Apoptosis of the host. As infection with Tehran strain leads to chronic infection in mice, therefore, we investigated the genes effective in creating the chronic form of Toxoplasma infection. The comparative analysis of genes showed increases in the expression of genes ctla4, ccl4, cd3e, c3, lcn2, gbp5, usp18, cyba, tap1 and samhd1 in the in the infected sample, which highlights their role in causing chronic infection. RNA-seq provides a valuable tool for analyzing host transcriptomes, better understanding the parasite-host interaction, and developing future drug and vaccine targets.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, Iran.
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Naser ZiaAli
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Aghajani
- Computer-Oriented Software Engineering, Rouzbahan University of Mazandaran, Sari, Iran
| | - Milad Mahdavi
- Computer-Oriented Software Engineering, Rouzbahan University of Mazandaran, Sari, Iran
| | - Mohamadreza Attari
- College of Agriculture & National Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, Iran
| |
Collapse
|
2
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
3
|
Yuan H, Zhang XX, Yang ZP, Wang XH, Mahmmod YS, Zhang P, Yan ZJ, Wang YY, Ren ZW, Guo QY, Yuan ZG. Unveiling of brain transcriptome of masked palm civet (Paguma larvata) with chronic infection of Toxoplasma gondii. Parasit Vectors 2022; 15:263. [PMID: 35871661 PMCID: PMC9308931 DOI: 10.1186/s13071-022-05378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to gain an understanding of the transcriptomic changes that occur in a wild species when infected with Toxoplasma gondii. The masked palm civet, an artifically domesticated animal, was used as the model of a wild species. Transcriptome analysis was used to study alterations in gene expression in the domesticated masked palm civet after chronic infection with T. gondii. METHODS Masked palm civets were infected with 105 T. gondii cysts and their brain tissue collected after 4 months of infection. RNA sequencing (RNA-Seq) was used to gain insight into the spectrum of genes that were differentially expressed due to infection. Quantitative reverse-transcription PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. RESULTS DEGs were screened from the sequencing results and analyzed. A total of 2808 DEGs were detected, of which 860 were upregulated and 1948 were downregulated. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in cellular process and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the brain of infected masked palm civets evolved over the course of infection and that DEGs were mainly enriched in the signal transduction, immune system processes, transport and catabolic pathways. Finally, 10 essential driving genes were identified from the immune signaling pathway. CONCLUSIONS This study revealed novel host genes which may provide target genes for the development of new therapeutics and detection methods for T. gondii infection in wild animals.
Collapse
Affiliation(s)
- Hao Yuan
- grid.413251.00000 0000 9354 9799College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052 Xinjiang People’s Republic of China ,grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642 People’s Republic of China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Xiu-Xiang Zhang
- grid.20561.300000 0000 9546 5767College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zi-Peng Yang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642 People’s Republic of China
| | - Xiao-Hu Wang
- grid.135769.f0000 0001 0561 6611Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong People’s Republic of China
| | - Yasser S. Mahmmod
- grid.31451.320000 0001 2158 2757Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511 Sharika Egypt ,grid.444463.50000 0004 1796 4519Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, 17155- Al Ain, Abu Dhabi, United Arab Emirates
| | - Pian Zhang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zi-Jing Yan
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yan-Yun Wang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zhao-Wen Ren
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qing-Yong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
4
|
Nugraha RYB, Jeelani G, Nozaki T. Physiological roles and metabolism of γ-aminobutyric acid (GABA) in parasitic protozoa. Trends Parasitol 2022; 38:462-477. [DOI: 10.1016/j.pt.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
|
5
|
Wang SS, Zhou CX, Elsheikha HM, He JJ, Zou FC, Zheng WB, Zhu XQ, Zhao GH. Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle. Parasit Vectors 2022; 15:22. [PMID: 35012632 PMCID: PMC8750853 DOI: 10.1186/s13071-021-05140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are important regulators of various biological and pathological processes, in particular the inflammatory response by modulating the transcriptional control of inflammatory genes. However, the role of lncRNAs in regulating the immune and inflammatory responses during infection with the protozoan parasite Toxoplasma gondii remains largely unknown. Methods We performed a longitudinal RNA sequencing analysis of human foreskin fibroblast (HFF) cells infected by T. gondii to identify differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs), and dysregulated pathways over the course of T. gondii lytic cycle. The transcriptome data were validated by qRT-PCR. Results RNA sequencing revealed significant transcriptional changes in the infected HFFs. A total of 697, 1234, 1499, 873, 1466, 561, 676 and 716 differentially expressed lncRNAs (DElncRNAs), and 636, 1266, 1843, 2303, 3022, 1757, 3088 and 2531 differentially expressed mRNAs (DEmRNAs) were identified at 1.5, 3, 6, 9, 12, 24, 36 and 48 h post-infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DElncRNAs and DEmRNAs revealed that T. gondii infection altered the expression of genes involved in the regulation of host immune response (e.g., cytokine–cytokine receptor interaction), receptor signaling (e.g., NOD-like receptor signaling pathway), disease (e.g., Alzheimer's disease), and metabolism (e.g., fatty acid degradation). Conclusions These results provide novel information for further research on the role of lncRNAs in immune regulation of T. gondii infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05140-3.
Collapse
Affiliation(s)
- Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Feng-Cai Zou
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Hu RS, He JJ, Elsheikha HM, Zou Y, Ehsan M, Ma QN, Zhu XQ, Cong W. Transcriptomic Profiling of Mouse Brain During Acute and Chronic Infections by Toxoplasma gondii Oocysts. Front Microbiol 2020; 11:570903. [PMID: 33193165 PMCID: PMC7604304 DOI: 10.3389/fmicb.2020.570903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
Infection by the protozoan Toxoplasma gondii can have a devastating impact on the structure and function of the brain of the infected individuals, particularly immunocompromised patients. A systems biology view of the brain transcriptome can identify key molecular targets and pathways that mediate the neuropathogenesis of cerebral toxoplasmosis. Here, we performed transcriptomic analysis of the brain of mice infected by T. gondii Pru strain oocysts at 11 and 33 days post-infection (dpi) compared to uninfected (control) mice using RNA sequencing (RNA-seq). T. gondii altered the expression of 936 and 2,081 transcripts at 11 and 33 dpi, respectively, and most of these were upregulated in the infected brains. Gene Ontology (GO) enrichment and pathway analysis showed that immune response, such as interferon-gamma (IFN-γ) responsive genes were strongly affected at 11dpi. Likewise, differentially expressed transcripts (DETs) related to T cell activation, cytokine production and immune cell proliferation were significantly altered at 33 dpi. Host-parasite interactome analysis showed that some DETs were involved in immune signaling, metabolism, biosynthesis-related processes and interspecies interaction. These findings should increase knowledge of the mouse brain transcriptome and the changes in transcriptional regulation and downstream signaling pathways during acute and chronic T. gondii infections.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
8
|
Harun MSR, Taylor M, Zhu XQ, Elsheikha HM. Transcriptome Profiling of Toxoplasma gondii-Infected Human Cerebromicrovascular Endothelial Cell Response to Treatment with Monensin. Microorganisms 2020; 8:microorganisms8060842. [PMID: 32512820 PMCID: PMC7356316 DOI: 10.3390/microorganisms8060842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/21/2023] Open
Abstract
Central to the progression of cerebral toxoplasmosis is the interaction of Toxoplasma gondii with the blood-brain barrier (BBB) endothelial cells. In the present work, we tested the hypothesis that inhibition of Wnt pathway signalling by the monovalent ionophore monensin reduces the growth of T. gondii infecting human brain microvascular endothelial cells (hBMECs) or microglial cells. The anti-parasitic effect of monensin (a Wnt signalling inhibitor) on the in vitro growth of T. gondii tachyzoites was investigated using two methods (Sulforhodamine B staining and microscopic parasite counting). The monensin inhibited T. gondii growth (50% inhibitory concentration [IC50] = 0.61 μM) with a selective index = 8.48 when tested against hBMECs (50% cytotoxic concentration [CC50] = 5.17 μM). However, IC50 of monensin was 4.13 μM with a SI = 13.82 when tested against microglia cells (CC50 = 57.08 μM), suggesting less sensitivity of microglia cells to monensin treatment. The effect of T. gondii on the integrity of the BBB was assessed by the transendothelial electrical resistance (TEER) assay using an in vitro human BBB model. The results showed that T. gondii infection significantly decreased hBMECs' TEER resistance, which was rescued when cells were treated with 0.1 µM monensin, probably due to the anti-parasitic activity of monensin. We also investigated the host-targeted effects of 0.1 µM monensin on global gene expression in hBMECs with or without T. gondii infection. Treatment of hBMECs with monensin did not significantly influence the expression of genes involved in the Wnt signalling pathway, suggesting that although inhibition of the Wnt signalling pathway did not play a significant role in T. gondii infection of hBMECs, monensin was still effective in limiting the growth of T. gondii. On the contrary, monensin treatment downregulated pathways related to steroids, cholesterol and protein biosynthesis and their transport between endoplasmic reticulum and Golgi apparatus, and deregulated pathways related to cell cycle and DNA synthesis and repair mechanisms. These results provide new insight into the host-modulatory effect of monensin during T. gondii infection, which merits further investigation.
Collapse
Affiliation(s)
- Mohammad S. R. Harun
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang 13200, Malaysia;
| | - Mica Taylor
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (X.-Q.Z.); (H.M.E.); Tel.: +86-(0)931-834-2837 (X.-Q.Z.); +44-(0)115-951-6445 (H.M.E); Fax: +44-(0)115-951-6440 (H.M.E.)
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
- Correspondence: (X.-Q.Z.); (H.M.E.); Tel.: +86-(0)931-834-2837 (X.-Q.Z.); +44-(0)115-951-6445 (H.M.E); Fax: +44-(0)115-951-6440 (H.M.E.)
| |
Collapse
|
9
|
Ma J, He JJ, Hou JL, Zhou CX, Zhang FK, Elsheikha HM, Zhu XQ. Metabolomic signature of mouse cerebral cortex following Toxoplasma gondii infection. Parasit Vectors 2019; 12:373. [PMID: 31358041 PMCID: PMC6664753 DOI: 10.1186/s13071-019-3623-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protozoan parasite Toxoplasma gondii infects and alters the neurotransmission in cerebral cortex and other brain regions, leading to neurobehavioral and neuropathologic changes in humans and animals. However, the molecules that contribute to these changes remain largely unknown. METHODS We have investigated the impact of T. gondii infection on the overall metabolism of mouse cerebral cortex. Mass-spectrometry-based metabolomics and multivariate statistical analysis were employed to discover metabolomic signatures that discriminate between cerebral cortex of T. gondii-infected and uninfected control mice. RESULTS Our results identified 73, 67 and 276 differentially abundant metabolites, which were involved in 25, 37 and 64 pathways at 7, 14 and 21 days post-infection (dpi), respectively. Metabolites in the unsaturated fatty acid biosynthesis pathway were upregulated as the infection progressed, indicating that T. gondii induces the biosynthesis of unsaturated fatty acids to promote its own growth and survival. Some of the downregulated metabolites were related to pathways, such as steroid hormone biosynthesis and arachidonic acid metabolism. Nine metabolites were identified as T. gondii responsive metabolites, namely galactosylsphingosine, arachidonic acid, LysoSM(d18:1), L-palmitoylcarnitine, calcitetrol, 27-Deoxy-5b-cyprinol, L-homophenylalanine, oleic acid and ceramide (d18:1/16:0). CONCLUSIONS Our data provide novel insight into the dysregulation of the metabolism of the mouse cerebral cortex during T. gondii infection and have important implications for studies of T. gondii pathogenesis.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, 250012, Shandong, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Jiang N, Zhang T, Wang D, Feng Y, Sang X, Yang N, Chen Q. Toxoplasma gondii Genotype Determines Tim-3 Expression Levels in Splenic and Circulatory T Cells in Mice. Front Microbiol 2018; 9:2967. [PMID: 30564216 PMCID: PMC6288189 DOI: 10.3389/fmicb.2018.02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that causes a common infection in many warm-blooded animals. During infection, the host’s immune system plays an important role in confining the dissemination of the parasites in the hosts. T cell immunoglobulin- and mucin domain–containing molecule 3 (Tim-3) has been characterized as an important regulator in cell-mediated immune responses in various infections. Here, we compared Tim-3 expression on splenic and circulatory T, B cells and a few cytokines in the sera of mice infected with the more virulent type I (RH) vs. the low virulent type II (ME49) strain. Tim-3 expression on the splenic and circulatory T cells of mice infected with T. gondii (RH strain) was higher than that in mice infected with T. gondii (ME49 strain). T. gondii infection reduced the proportion of splenic helper T cells (Th) and cytotoxic T cells (Tc) and increased Tim-3 expression. Further, serum levels of interleukin (IL)-2, interferon γ, tumor necrosis factor (TNF)-α, IL-12p70, IL-22, IL-17A, and IL-5 increased significantly after infection. Mice infected with T. gondii (ME49 strain) showed higher levels of TNF-α, IL-17A, IL-12p70, and IL-22 than that infected by the RH strain. Our study revealed that T. gondii strains may have their inherent ability in triggering different host immune responses, which may explain the clinical variation in diseases severity after infection.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ting Zhang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dawei Wang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Na Yang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Milovanović I, Busarčević M, Trbovich A, Ivović V, Uzelac A, Djurković-Djaković O. Evidence for host genetic regulation of altered lipid metabolism in experimental toxoplasmosis supported with gene data mining results. PLoS One 2017; 12:e0176700. [PMID: 28459857 PMCID: PMC5411058 DOI: 10.1371/journal.pone.0176700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is one of the most successful parasites on Earth, infecting a wide array of mammals including one third of the global human population. The obligate intracellular protozoon is not capable of synthesizing cholesterol (Chl), and thus depends on uptake of host Chl for its own development. To explore the genetic regulation of previously observed lipid metabolism alterations during acute murine T. gondii infection, we here assessed total Chl and its fractions in serum and selected tissues at the pathophysiological and molecular level, and integrated the observed gene expression of selected molecules relevant for Chl metabolism, including its biosynthetic and export KEGG pathways, with the results of published transcriptomes obtained in similar murine models of T. gondii infection. The serum lipid status as well as the transcript levels of relevant genes in the brain and the liver were assessed in experimental models of acute and chronic toxoplasmosis in wild-type mice. The results showed that acute infection was associated with a decrease in Chl content in both the liver and periphery (brain, peripheral lymphocytes), and a decrease in Chl reverse transport. In contrast, in chronic infection, a return to normal levels of Chl metabolism has been noted. These changes corresponded to the brain and liver gene expression results as well as to data obtained via mining. We propose that the observed changes in Chl metabolism are part of the host defense response. Further insight into the lipid metabolism in T. gondii infection may provide novel targets for therapeutic agents.
Collapse
Affiliation(s)
- Ivan Milovanović
- Institute for Pathologic Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Busarčević
- National Reference Laboratory for Toxoplasmosis, Center of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Alexander Trbovich
- Institute for Pathologic Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
- National Reference Laboratory for Toxoplasmosis, Center of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ivović
- National Reference Laboratory for Toxoplasmosis, Center of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uzelac
- National Reference Laboratory for Toxoplasmosis, Center of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Olgica Djurković-Djaković
- National Reference Laboratory for Toxoplasmosis, Center of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
12
|
Long-Term Relationships: the Complicated Interplay between the Host and the Developmental Stages of Toxoplasma gondii during Acute and Chronic Infections. Microbiol Mol Biol Rev 2016; 79:387-401. [PMID: 26335719 DOI: 10.1128/mmbr.00027-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii represents one of the most common parasitic infections in the world. The asexual cycle can occur within any warm-blooded animal, but the sexual cycle is restricted to the feline intestinal epithelium. T. gondii is acquired through consumption of tissue cysts in undercooked meat as well as food and water contaminated with oocysts. Once ingested, it differentiates into a rapidly replicating asexual form and disseminates throughout the body during acute infection. After stimulation of the host immune response, T. gondii differentiates into a slow-growing, asexual cyst form that is the hallmark of chronic infection. One-third of the human population is chronically infected with T. gondii cysts, which can reactivate and are especially dangerous to individuals with reduced immune surveillance. Serious complications can also occur in healthy individuals if infected with certain T. gondii strains or if infection is acquired congenitally. No drugs are available to clear the cyst form during the chronic stages of infection. This therapeutic gap is due in part to an incomplete understanding of both host and pathogen responses during the progression of T. gondii infection. While many individual aspects of T. gondii infection are well understood, viewing the interconnections between host and parasite during acute and chronic infection may lead to better approaches for future treatment. The aim of this review is to provide an overview of what is known and unknown about the complex relationship between the host and parasite during the progression of T. gondii infection, with the ultimate goal of bridging these events.
Collapse
|
13
|
Cheeseman K, Weitzman JB. Host–parasite interactions: an intimate epigenetic relationship. Cell Microbiol 2015; 17:1121-32. [DOI: 10.1111/cmi.12471] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Kevin Cheeseman
- Sorbonne Paris Cité Epigenetics and Cell Fate UMR 7216 CNRS Université Paris Diderot Paris France
| | - Jonathan B. Weitzman
- Sorbonne Paris Cité Epigenetics and Cell Fate UMR 7216 CNRS Université Paris Diderot Paris France
| |
Collapse
|
14
|
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 2014; 15:806. [PMID: 25240600 PMCID: PMC4177681 DOI: 10.1186/1471-2164-15-806] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection. RESULTS We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. CONCLUSIONS RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.
Collapse
Affiliation(s)
| | | | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Abdel Aal AA, Attia SS, Hanafy NA, Al-Antably AS, Hassan MA, El-Sherbiny W, Nasr AS. Molecular Diagnosis of Toxoplasmosis in Non Immune Pregnant Females. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM: Infection with the protozoan parasite Toxoplasma gondii has a worldwide distribution. Congenital infection is the most important part of the disease burden due to Toxoplasma infection in humans. Early diagnosis of maternal infection helps to prevent severe complications of toxoplasmosis. In the present study, three PCR assays (conventional, nested & quantitative) were evaluated for diagnosis of recent toxoplasmosis based on detection of Toxoplasma B1 gene.MATERIAL AND METHODS: The present study was carried out on 150 pregnant females who were serologically negative for anti-Toxoplasma IgG and IgM antibodies.RESULTS: The results revealed that out of 12 true positive cases (by 2 out of the 3 PCR protocols), 8 cases were positive by cPCR, 11 cases were positive by nPCR and 12 cases were positive by qPCR. Accurate estimation of genomic Toxoplasma DNA in positive samples was achieved by qPCR. In general, PCR assays offer a sensitive alternative of serological methods for diagnosis of recent maternal toxoplasmosis. In addition, qPCR decreases the risk of contamination of PCR products being a closed tube method and helps in estimation of infection load.CONCLUSIONS: We recommend screening of high-risk pregnant women by qPCR for early diagnosis of toxoplasmosis and proper management.
Collapse
|