1
|
Gao S, Xu H, Li H, Feng X, Zhou J, Guo R, Liang Z, Ding J, Li X, Huang Y, Liu W, Liang S. Identification and functional analysis of C-type lectin from mosquito Aedes albopictus in response to dengue virus infection. Parasit Vectors 2024; 17:375. [PMID: 39232769 PMCID: PMC11373435 DOI: 10.1186/s13071-024-06453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND C-type lectins (CTLs) are a large family of proteins with sugar-binding activity. CTLs contain an evolutionarily conserved C-type lectin domain (CTLD) that binds microbial carbohydrates in a calcium-dependent manner, thereby playing a key role in both microbial pathogenesis and innate immune responses. Aedes albopictus is an important vector for transmitting dengue virus (DENV) worldwide. Currently, the molecular characteristics and functions of CTLs in Ae. albopictus are largely unknown. METHODS Transcripts encoding CTL proteins in the Ae. albopictus genome assembly were analyzed via sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of the CTLs. Quantitative analysis was performed to determine the gene expression features of CTLs during mosquito development and in different tissues of female adults after blood feeding. In addition, the functional role of CTLs in response to DENV infection was investigated in Ae. albopictus mosquito cells. RESULTS We identified 39 transcripts encoding CTL proteins in the Ae. albopictus transcriptome. Aedes albopictus CTLs are classified into three groups based on the number of CTLDs and the domain architecture. These included 29 CTL-Ss (single-CTLDs), 1 immulectins (dual-CTLD) and 9 CTL-Xs (CTLDs with other domains). Phylogenetic analysis and structural modeling indicated that CTLs in Ae. albopictus are highly conserved with the homologous CTLs in Aedes aegypti. The expression profile assay revealed differential expression patterns of CTLs in both developmental stages and in adult female tissues. Knockdown and overexpression of three CTLs (CTL-S12, S17 and S19) confirmed that they can promote dengue virus infection in Ae. albopictus cells. CONCLUSIONS The CTL genes in Ae. albopictus mosquito and other mosquito species are evolutionarily conserved and exhibit different developmental and tissue expression features. The functional assay indicated that three CTLs in Ae. albopictus mosquitoes are involved in promoting dengue virus infection. Our study revealed that CTLs play important roles in both the physiological processes and viral infection in mosquito vectors.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haodong Xu
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongbo Li
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiao Feng
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jitao Zhou
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinying Ding
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Li
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yijia Huang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenquan Liu
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Shaohui Liang
- Department of Medical Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Tikhe CV, Cardoso-Jaime V, Dong S, Rutkowski N, Dimopoulos G. Trypsin-like Inhibitor Domain (TIL)-Harboring Protein Is Essential for Aedes aegypti Reproduction. Int J Mol Sci 2022; 23:ijms23147736. [PMID: 35887084 PMCID: PMC9319116 DOI: 10.3390/ijms23147736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich trypsin inhibitor-like domain (TIL)-harboring proteins are broadly distributed in nature but remain understudied in vector mosquitoes. Here we have explored the biology of a TIL domain-containing protein of the arbovirus vector Aedes aegypti, cysteine-rich venom protein 379 (CRVP379). CRVP379 was previously shown to be essential for dengue virus infection in Ae. aegypti mosquitoes. Gene expression analysis showed CRVP379 to be highly expressed in pupal stages, male testes, and female ovaries. CRVP379 expression is also increased in the ovaries at 48 h post-blood feeding. We used CRISPR-Cas9 genome editing to generate two mutant lines of CRVP379 with mutations inside or outside the TIL domain. Female mosquitoes from both mutant lines showed severe defects in their reproductive capability; mutant females also showed differences in their follicular cell morphology. However, the CRVP379 line with a mutation outside the TIL domain did not affect male reproductive performance, suggesting that some CRVP379 residues may have sexually dimorphic functions. In contrast to previous reports, we did not observe a noticeable difference in dengue virus infection between the wild-type and any of the mutant lines. The importance of CRVP379 in Ae. aegypti reproductive biology makes it an interesting candidate for the development of Ae. aegypti population control methods.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
3
|
The immune protection induced by a serine protease from the Trichinella spiralis adult against Trichinella spiralis infection in pigs. PLoS Negl Trop Dis 2021; 15:e0009408. [PMID: 33970910 PMCID: PMC8136858 DOI: 10.1371/journal.pntd.0009408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Trichinellosis is a major foodborne parasitosis caused by Trichinella spiralis. In the present study, a serine protease gene from an adult T. spiralis (Ts-Adsp) cDNA library was cloned, expressed in Escherichia coli and purified by Ni-affinity chromatography. Previous studies of our laboratory have found that mice vaccinated with recombinant Ts-Adsp protein (rTs-Adsp) exhibited partial protection against T. spiralis infection. In this study, the protective effect of rTs-Adsp against T. spiralis infection in pigs was further explored. The cell-mediated and humoral immune responses induced by rTs-Adsp were measured, including the dynamic trends of specific antibody levels (IgG, IgG1, IgG2a and IgM), as well as the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) in the serum. Moreover, the changes in T lymphocytes, B lymphocytes, and neutrophils were measured to evaluate cellular immune responses in pigs vaccinated with rTs-Adsp. The results indicated that a Th1-Th2 mixed immune response with Th1 predominant was induced by rTs-Adsp after vaccination. Flow cytometric analysis showed that the proportions of CD4+ T cells, B cells, and neutrophils in the immunized groups were significantly increased. Furthermore, pigs vaccinated with rTs-Adsp exhibited a 50.9% reduction in the muscle larvae burden, compare with pigs from the PBS group five weeks after challenged. Our results suggested that rTs-Adsp elicited partial protection and it could be a potential target molecule for preventing and controlling Trichinella transmission from pigs to human. Trichinellosis is a global foodborne parasitic disease caused by consuming raw or poorly cooked meat. The porcine products are the most common source. Therefore, it will have a great significance for public health security and human health to prevent and control the trichinellosis. We previously found that mice vaccinated with recombinant Adsp protein (rTs-Adsp) exhibited partial protection against T. spiralis infection. In this study, the protective effect of rTs-Adsp against challenge infections with T. spiralis in pigs was further explored. We found that rTs-Adsp elicited partial protection and it could be an important target molecule for preventing and controlling T. spiralis transmission from pigs to human.
Collapse
|
4
|
The Developmental Transcriptome of Aedes albopictus, a Major Worldwide Human Disease Vector. G3-GENES GENOMES GENETICS 2020; 10:1051-1062. [PMID: 31964684 PMCID: PMC7056973 DOI: 10.1534/g3.119.401006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aedes albopictus mosquitoes are important vectors for a number of human pathogens including the Zika, dengue, and chikungunya viruses. Capable of displacing Aedes aegypti populations, this mosquito adapts to cooler environments which increases its geographical range and transmission potential. There are limited control strategies for Aedes albopictus mosquitoes which is likely attributed to the lack of comprehensive biological studies on this emerging vector. To fill this void, here using RNAseq we characterized Aedes albopictus mRNA expression profiles at 34 distinct time points throughout development providing the first high-resolution comprehensive view of the developmental transcriptome of this worldwide human disease vector. This enabled us to identify several patterns of shared gene expression among tissues as well as sex-specific expression patterns. To illuminate the similarities and differences with Aedes aegypti, a related human disease vector, we also performed a comparative analysis between the two developmental transcriptomes, identifying life stages where the two species exhibit similar and distinct gene expression patterns. These findings provide insights into the similarities and differences between Aedes albopictus and Aedes aegypti mosquito biology. In summary, the results generated from this study should form the basis for future investigations on the biology of Aedes albopictus and provide a gold mine resource for the development of transgene-based vector control strategies.
Collapse
|
5
|
Ramírez-Flores CJ, Cruz-Mirón R, Arroyo R, Mondragón-Castelán ME, Nopal-Guerrero T, González-Pozos S, Ríos-Castro E, Mondragón-Flores R. Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells. Parasitol Res 2018; 118:289-306. [DOI: 10.1007/s00436-018-6163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
|
6
|
Gao H, Tang B, Bai X, Wang L, Wu X, Shi H, Wang X, Liu X, Liu M. Characterization of an antigenic serine protease in the Trichinella spiralis adult. Exp Parasitol 2018; 195:8-18. [PMID: 30248330 DOI: 10.1016/j.exppara.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/13/2018] [Accepted: 09/16/2018] [Indexed: 01/16/2023]
Abstract
Serine proteases have been identified as important molecules that are involved in many parasitic infections, and these molecules have also been suggested to play important roles in Trichinella spiralis infections. In the present study, the antigenic serine protease gene Ts-ADSp-7, which was screened from a cDNA library of Trichinella spiralis Adults at 3 days post-infection (p.i.), was cloned and expressed in Escherichia coli. The encoded protein, Ts-ADSp-7, revealed a potential trypsin-like serine protease domain but lacked substrate banding site at position 227 and protease activity. Transcription could be detected in the Adult and muscle larval stage but not in the newborn larval stage, where no fluorescent signal was detected. Western blot analysis revealed that the 3 days p.i. Adults and muscle larvae could secrete Ts-ADSp-7. Interestingly, strong fluorescent signal of Ts-ADSp-7 could be detected in the nucleoli of the enlarged muscle cell nuclei from 12 to 16 days p.i. and in the β-stichosomes of the muscle larvae from 16 to 35 days p.i.. The coagulation assay indicated that Ts-ADSp-7 could inhibit intrinsic coagulation pathway. Regarding the putatively important function of the serine protease in the helminth infection to hosts, a total of 81 serine proteases were found in the parasite and mainly comprised eight subfamilies. These subfamilies exhibited high similarity to transmembrane serine protease, coagulation factor XI, lipocalin, guanylin, ceropin, kallikrein, and plasminogen. Moreover, stage specificity was detected in several subfamilies. In summary, the putatively inactive serine protease-like protein Ts-ADSp-7 could inhibit blood coagulation, and the protein is located in the enlarged nuclei of nurse cells during capsule formation. Furthermore, members of the serine protease family in the parasite might be important molecules in the parasite-host interaction.
Collapse
Affiliation(s)
- He Gao
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Bin Tang
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Xue Bai
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Libo Wang
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Xiuping Wu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Haining Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, USA
| | - Xuelin Wang
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China
| | - Xiaolei Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China.
| | - Mingyuan Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
7
|
Kannan M, Ramya T, Anbalagan S, Suriya J, Krishnan M. Proteomic analysis of pupal gut serine protease of Silkworm, Bombyx mori : Partial purification and biochemical characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Almeida Filho LC, de Souza TM, Tabosa PM, Soares NG, Rocha-Bezerra LC, Vasconcelos IM, Carvalho AF. Trypsin inhibitor from Leucaena leucocephala seeds delays and disrupts the development of Aedes aegypti, a multiple-disease vector. PEST MANAGEMENT SCIENCE 2017; 73:181-187. [PMID: 27040615 DOI: 10.1002/ps.4284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Nowadays, the Aedes aegypti mosquito represents a serious public health issue in view of the large outbreaks of the arboviral diseases zika, dengue, chikungunya and yellow fever. This holometabolous insect has midgut digestive enzymes that are trypsin- and chymotrypsin-like proteins. Protease inhibitors are able to bind to proteolytic enzymes and promote a blockage in digestion and nutrition, leading to death. Thus, we investigated the effect of trypsin inhibitor of Leucaena leucocephala (LTI) seeds on egg hatching, larval development and digestive midgut proteases. RESULTS LTI was obtained by trichloroacetic acid precipitation followed by a single chromatography step on anhydrous trypsin sepharose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed a single protein band with a molecular mass close to 20 kDa. After exposure of Ae. aegypti eggs to LTI (0.3 mg mL-1 ), egg hatching was reduced (50%). LTI did not show acute toxicity on newly hatched larvae incubated under the same conditions, but after 10 days of exposure a high mortality rate (86%) was observed and the surviving larvae had a 25% delay in development. LTI was able to inhibit in vitro the midgut enzymatic activity (70%), and when larvae were incubated with LTI solution we observed an inhibition of 56%. CONCLUSIONS LTI is a promising new tool to control critical points of Ae. aegypti development. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luiz Cp Almeida Filho
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Terezinha M de Souza
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Ms Tabosa
- Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nayana G Soares
- Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lady Cb Rocha-Bezerra
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ilka M Vasconcelos
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana Fu Carvalho
- Biology Department, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
9
|
Yousef HA, Afify A, Meguid AA, Hassan HM. Profiling of proteins and proteases in the products of the salivary gland, digestive tract and excretions from larvae of the camel nasal botfly, Cephalopina titillator (Clark). Z NATURFORSCH C 2015; 70:197-203. [PMID: 26408575 DOI: 10.1515/znc-2014-4206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/25/2015] [Indexed: 11/15/2022]
Abstract
Proteins and proteolytic activities in the contents of the salivary gland (SGc), digestive tract (DTc) and excretory-secretory products (ESP) from larvae of the camel nasal botfly Cephalopina titillator were separated electrophoretically, and characterized. The protein profiles of the different samples were qualitatively quite similar in the larval stages L2 and L3. Zymogram analysis of proteases in the samples indicated that the digestive tract contained a greater variety of proteases than the salivary gland or the excretory-secretory products. They are mainly serine proteases. Proteases of ESP and DTc (especially of 3rd instar) contain trypsin- and chymotrypsin-like serine proteases, while the serine proteases of SGc are not of the trypsin- or chemotrypsin-type.
Collapse
|
10
|
Pinilla YT, Moreno-Pérez DA, Patarroyo MA, Bello FJ. Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions. Acta Trop 2013; 128:686-91. [PMID: 24076089 DOI: 10.1016/j.actatropica.2013.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 11/16/2022]
Abstract
Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Diptera maggots release proteolytic enzymes contained in larval excretion and secretion (ES) products playing a key role in digestion. Special interest in proteolytic enzymes has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue during larval therapy. This study was thus aimed at identifying and characterising S. magellanica proteolytic enzyme ES products for the first time. These products were obtained from first-, second- and third-instar larvae taken from a previously-established colony. ES proteins were separated by SDS-PAGE and their proteolytic activity was characterised by zymograms and inhibition assays involving BAPNA (Nα-benzoyl-dl-Arg-p-nitroanilide) and SAPNA substrates, using synthetic inhibitors. The protein profile ranged from ∼69kDa to ∼23kDa; several of them coincided with the Lucilia sericata ES protein profile. Serine-protease hydrolysis activity (measured by zymogram) was confirmed when a ∼25kDa band disappeared upon ES incubation with PMSF inhibitor at pH 7.8. Analysis of larval ES proteolytic activity on BAPNA and SAPNA substrates (determined by using TLCK and TPCK specific inhibitors) suggested a greater amount of trypsin-like protease. These results support the need for further experiments aimed at validating S. magellanica use in larval therapy.
Collapse
Affiliation(s)
- Yudi T Pinilla
- Medical and Forensic Entomology Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | | | | | | |
Collapse
|