1
|
Ogutu N, Agumba S, Moshi V, Onyango P, Ouma C, Ramaita E, Kariuki L, Gimnig JE, Abong'o B, Ochomo E. Efficacy of PermaNet ® Dual compared to Interceptor ® G2 and PermaNet 3.0 in experimental huts in Siaya County, western Kenya. Malar J 2024; 23:326. [PMID: 39488707 PMCID: PMC11531690 DOI: 10.1186/s12936-024-05157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Pyrethroid-chlorfenapyr nets have shown significant epidemiological impact over pyrethroid-only and pyrethroid plus piperonyl-butoxide (PBO) in Africa. A non-inferiority evaluation of PermaNet® Dual, a new chlorfenapyr plus deltamethrin net, compared to Interceptor® G2, was conducted in experimental huts in Siaya, Kenya against free-flying pyrethroid-resistant Anopheles funestus. METHODS This study was an experimental hut trial, following a 7 by 7 Latin Square design. Seven treatments and seven sleepers were deployed in the experimental huts daily and rotated weekly and daily, respectively. Mosquitoes were collected every morning between 06:30 h and 08:30 h and were assessed for blood feeding and then monitored for immediate knockdown 1-h post collection and delayed mortality after 72 h. Differences in proportional outcomes were analysed using the blocked logistic regression model, while differences in numerical outcomes were analysed using the negative binomial regression model. Non-inferiority determination was performed based on World Health Organization (WHO) protocol. RESULTS Mortality at 72 h was 30.2% for PermaNet 3.0, 44.4% for the Interceptor® G2 and 49.2% for the PermaNet® Dual. Blood feeding was highest with PermaNet® Dual at 15%, and least with PermaNet® 3.0 at 10%. PermaNet® Dual and Interceptor® G2 had no significant differences in mortality (OR = 1.10, 95% CI 1.00-1.20) or blood feeding (OR = 1.18, 95% CI 1.04-1.33) and the lower confidence bounds were within the non-inferiority margins but for blood feeding, non-inferiority was relatively high to the upper 95% confidence bound. PermaNet® Dual was non-inferior to the Interceptor® G2 and superior to the PermaNet® 3.0 nets in causing mortality but inferior to PermaNet ®3.0 in blood feeding inhibition of the vectors. CONCLUSION PermaNet® Dual met the WHO criteria for non-inferiority to Interceptor® G2 and may be considered for deployment for public health use against pyrethroid-resistant Anopheles vectors of malaria.
Collapse
Affiliation(s)
- Nashon Ogutu
- Research World Limited Company, Kisumu, Kenya
- Department of Zoology, School of Physical and Biological Science, Maseno University, Maseno, Kenya
| | - Silas Agumba
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Vincent Moshi
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Patrick Onyango
- Department of Zoology, School of Physical and Biological Science, Maseno University, Maseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edith Ramaita
- National Malaria Control Programme, Ministry of Health, Nairobi, Kenya
| | - Lenson Kariuki
- National Malaria Control Programme, Ministry of Health, Nairobi, Kenya
| | - John E Gimnig
- Division for Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Abong'o
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Eric Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
2
|
Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbénou LS. Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates. BMC Genomics 2024; 25:348. [PMID: 38582836 PMCID: PMC10998338 DOI: 10.1186/s12864-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Collapse
Affiliation(s)
- Helga Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Claudia Corredor
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3ABionet network, Cape Town, South Africa
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Regional Institute of Public Health (IRSP), Ouidah, Benin.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
3
|
Omoke D, Impoinvil LM, Derilus D, Okeyo S, Saizonou H, Mulder N, Dada N, Lenhart A, Djogbénou L, Ochomo E. Whole transcriptomic analysis reveals overexpression of salivary gland and cuticular proteins genes in insecticide-resistant Anopheles arabiensis from Western Kenya. BMC Genomics 2024; 25:313. [PMID: 38532318 DOI: 10.1186/s12864-024-10182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Effective vector control is key to malaria prevention. However, this is now compromised by increased insecticide resistance due to continued reliance on insecticide-based control interventions. In Kenya, we have observed heterogenous resistance to pyrethroids and organophosphates in Anopheles arabiensis which is one of the most widespread malaria vectors in the country. We investigated the gene expression profiles of insecticide resistant An. arabiensis populations from Migori and Siaya counties in Western Kenya using RNA-Sequencing. Centers for Disease Control and Prevention (CDC) bottle assays were conducted using deltamethrin (DELTA), alphacypermethrin (ACYP) and pirimiphos-methyl (PMM) to determine the resistance status in both sites. RESULTS Mosquitoes from Migori had average mortalities of 91%, 92% and 58% while those from Siaya had 85%, 86%, and 30% when exposed to DELTA, ACYP and PMM, respectively. RNA-Seq analysis was done on pools of mosquitoes which survived exposure ('resistant'), mosquitoes that were not exposed, and the insecticide-susceptible An. arabiensis Dongola strain. Gene expression profiles of resistant mosquitoes from both Migori and Siaya showed an overexpression mainly of salivary gland proteins belonging to both the short and long form D7 genes, and cuticular proteins (including CPR9, CPR10, CPR15, CPR16). Additionally, the overexpression of detoxification genes including cytochrome P450s (CYP9M1, CYP325H1, CYP4C27, CYP9L1 and CYP307A1), 2 carboxylesterases and a glutathione-S-transferase (GSTE4) were also shared between DELTA, ACYP, and PMM survivors, pointing to potential contribution to cross resistance to both pyrethroid and organophosphate insecticides. CONCLUSION This study provides novel insights into the molecular basis of insecticide resistance in An. arabiensis in Western Kenya and suggests that salivary gland proteins and cuticular proteins are associated with resistance to multiple classes of insecticides.
Collapse
Affiliation(s)
- Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | | | | | - Nsa Dada
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Luc Djogbénou
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| |
Collapse
|
4
|
Odero JI, Abong'o B, Moshi V, Ekodir S, Harvey SA, Ochomo E, Gimnig JE, Achee NL, Grieco JP, Oria PA, Monroe A. Early morning anopheline mosquito biting, a potential driver of malaria transmission in Busia County, western Kenya. Malar J 2024; 23:66. [PMID: 38438933 PMCID: PMC10910777 DOI: 10.1186/s12936-024-04893-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) contributed significantly to the decline in malaria since 2000. Their protective efficacy depends not only on access, use, and net integrity, but also location of people within the home environment and mosquito biting profiles. Anopheline mosquito biting and human location data were integrated to identify potential gaps in protection and better understand malaria transmission dynamics in Busia County, western Kenya. METHODS Direct observation of human activities and human landing catches (HLC) were performed hourly between 1700 to 0700 h. Household members were recorded as home or away; and, if at home, as indoors/outdoors, awake/asleep, and under a net or not. Aggregated data was analysed by weighting hourly anopheline biting activity with human location. Standard indicators of human-vector interaction were calculated using a Microsoft Excel template. RESULTS There was no significant difference between indoor and outdoor biting for Anopheles gambiae sensu lato (s.l.) (RR = 0.82; 95% CI 0.65-1.03); significantly fewer Anopheles funestus were captured outdoors than indoors (RR = 0.41; 95% CI 0.25-0.66). Biting peaked before dawn and extended into early morning hours when people began to awake and perform routine activities, between 0400-0700 h for An. gambiae and 0300-0700 h for An. funestus. The study population away from home peaked at 1700-1800 h (58%), gradually decreased and remained constant at 10% throughout the night, before rising again to 40% by 0600-0700 h. When accounting for resident location, nearly all bites within the peri-domestic space (defined as inside household structures and surrounding outdoor spaces) occurred indoors for unprotected people (98%). Using an ITN while sleeping was estimated to prevent 79% and 82% of bites for An. gambiae and An. funestus, respectively. For an ITN user, most remaining exposure to bites occurred indoors in the hours before bed and early morning. CONCLUSION While use of an ITN was estimated to prevent most vector bites in this context, results suggest gaps in protection, particularly in the early hours of the morning when biting peaks and many people are awake and active. Assessment of additional human exposure points, including outside of the peri-domestic setting, are needed to guide supplementary interventions for transmission reduction.
Collapse
Affiliation(s)
- Julius I Odero
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Bernard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sheila Ekodir
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Steven A Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA, USA
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Eck Institute for Global Health, Notre Dame, IN, USA
| | - John P Grieco
- Department of Biological Sciences, University of Notre Dame, Eck Institute for Global Health, Notre Dame, IN, USA
| | - Prisca A Oria
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| |
Collapse
|
5
|
Abong’o B, Agumba S, Moshi V, Simwero J, Otima J, Ochomo E. Insecticide treated eaves screens provide additional marginal protection compared to untreated eave screens under semi-field conditions in western Kenya. MALARIAWORLD JOURNAL 2024; 15:1. [PMID: 38322708 PMCID: PMC10842374 DOI: 10.5281/zenodo.10567425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Introduction Human habitats remain the main point of human-vector interaction leading to malaria transmission despite the sustained use of insecticide-treated nets and indoor residual spraying. Simple structural modifications involving screening of doors, windows and eaves have great potential for reducing indoor entry of mosquitoes. Moreover, insecticide treatment of the screen material may provide additional benefit in mosquito population reduction. Materials and Methods Four huts, each constructed inside a semi-field structure, were used in the study. Two had untreated eave and door screens and screened air cavities in place of windows (experiment 1) or were similar but with the eave screens treated with Actellic® 300CS insecticide (experiment 2). The other two huts remained unscreened throughout the study. Two hundred, 3-day old adults of F1 generation Anopheles funestus collected by aspiration or F0 reared from An. arabiensis larvae or An. arabiensis (Dongola strain) were released in each semi-field structure at dusk and recaptured the following morning. A single volunteer slept in each hut under an untreated bednet each night of the study. Recaptured mosquitoes were counted and recorded by location, either indoor or outdoor of each hut in the different semi-field structures. Results Based on modelled estimates, significantly fewer, 10% An. arabiensis from Ahero, 11% An. arabiensis Dongola strain and 10% An. funestus from Siaya were observed inside modified huts compared to unmodified ones. Treating of eave screen material with Actellic® 300CS significantly reduced indoor numbers of An. arabiensis from Ahero, to nearly 0%, and An. arabiensis Dongola strain, to 3%, compared to huts with untreated eave screens, while eliminating An. funestus indoors. These modifications cost US$180 /structure and have been observed to last more than 15 years in a different location. Conclusions Eave, door and window screening are effective ways of reducing mosquito entry into houses. Additionally, treatment of eave screen material with an effective insecticide further reduces the Anopheles population in and around the screened huts under semi-field conditions and could greatly complement existing vector control efforts.
Collapse
Affiliation(s)
- Bernard Abong’o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| | - Silas Agumba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jacob Simwero
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Jane Otima
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| |
Collapse
|
6
|
Nattoh G, Onyango B, Makhulu EE, Omoke D, Ang’ang’o LM, Kamau L, Gesuge MM, Ochomo E, Herren JK. Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission. Parasit Vectors 2023; 16:335. [PMID: 37749577 PMCID: PMC10519057 DOI: 10.1186/s13071-023-05933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.
Collapse
Grants
- I-1-F-5852-1 The International Foundation for Science, Stockholm, Sweden
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840) International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- SMBV-FFT The Childrens' Investment Fund Foundation
- AV/AASS/006 The ANTi-VeC network
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Open Philanthropy (SYMBIOVECTOR Track A) and the Bill and Melinda Gates Foundation (INV0225840)
- The Childrens’ Investment Fund Foundation
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
Collapse
Affiliation(s)
- Godfrey Nattoh
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biological Sciences, Kaimosi Friends University, Kaimosi, Kenya
| | - Brenda Onyango
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Diana Omoke
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Luna Kamau
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Nairobi, Kenya
| | - Maxwell Machani Gesuge
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
7
|
Mawejje HD, Weetman D, Epstein A, Lynd A, Opigo J, Maiteki-Sebuguzi C, Lines J, Kamya MR, Rosenthal PJ, Donnelly MJ, Dorsey G, Staedke SG. Characterizing pyrethroid resistance and mechanisms in Anopheles gambiae ( s.s.) and Anopheles arabiensis from 11 districts in Uganda. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100106. [PMID: 36590346 PMCID: PMC9798136 DOI: 10.1016/j.crpvbd.2022.100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Insecticide resistance threatens recent progress on malaria control in Africa. To characterize pyrethroid resistance in Uganda, Anopheles gambiae (s.s.) and Anopheles arabiensis were analyzed from 11 sites with varied vector control strategies. Mosquito larvae were collected between May 2018 and December 2020. Sites were categorized as receiving no indoor-residual spraying ('no IRS', n = 3); where IRS was delivered from 2009 to 2014 and in 2017 and then discontinued ('IRS stopped', n = 4); and where IRS had been sustained since 2014 ('IRS active', n = 4). IRS included bendiocarb, pirimiphos methyl and clothianidin. All sites received long-lasting insecticidal nets (LLINs) in 2017. Adult mosquitoes were exposed to pyrethroids; with or without piperonyl butoxide (PBO). Anopheles gambiae (s.s.) and An. arabiensis were identified using PCR. Anopheles gambiae (s.s.) were genotyped for Vgsc-995S/F, Cyp6aa1, Cyp6p4-I236M, ZZB-TE, Cyp4j5-L43F and Coeae1d, while An. arabiensis were examined for Vgsc-1014S/F. Overall, 2753 An. gambiae (s.l.), including 1105 An. gambiae (s.s.) and 1648 An. arabiensis were evaluated. Species composition varied by site; only nine An. gambiae (s.s.) were collected from 'IRS active' sites, precluding species-specific comparisons. Overall, mortality following exposure to permethrin and deltamethrin was 18.8% (148/788) in An. gambiae (s.s.) and 74.6% (912/1222) in An. arabiensis. Mortality was significantly lower in An. gambiae (s.s.) than in An. arabiensis in 'no IRS' sites (permethrin: 16.1 vs 67.7%, P < 0.001; deltamethrin: 24.6 vs 83.7%, P < 0.001) and in 'IRS stopped' sites (permethrin: 11.3 vs 63.6%, P < 0.001; deltamethrin: 25.6 vs 88.9%, P < 0.001). When PBO was added, mortality increased for An. gambiae (s.s.) and An. arabiensis. Most An. gambiae (s.s.) had the Vgsc-995S/F mutation (95% frequency) and the Cyp6p4-I236M resistance allele (87%), while the frequency of Cyp4j5 and Coeae1d were lower (52% and 55%, respectively). Resistance to pyrethroids was widespread and higher in An. gambiae (s.s.). Where IRS was active, An. arabiensis dominated. Addition of PBO to pyrethroids increased mortality, supporting deployment of PBO LLINs. Further surveillance of insecticide resistance and assessment of associations between genotypic markers and phenotypic outcomes are needed to better understand mechanisms of pyrethroid resistance and to guide vector control.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jimmy Opigo
- National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda.,National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | | |
Collapse
|
8
|
Githure JI, Yewhalaw D, Atieli H, Hemming-Schroeder E, Lee MC, Wang X, Zhou G, Zhong D, King CL, Dent A, Mukabana WR, Degefa T, Hsu K, Githeko AK, Okomo G, Dayo L, Tushune K, Omondi CO, Taffese HS, Kazura JW, Yan G. Enhancing Malaria Research, Surveillance, and Control in Endemic Areas of Kenya and Ethiopia. Am J Trop Med Hyg 2022; 107:14-20. [PMID: 36228905 PMCID: PMC9662210 DOI: 10.4269/ajtmh.21-1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria control programs in Africa encounter daunting challenges that hinder progressive steps toward elimination of the disease. These challenges include widespread insecticide resistance in mosquito vectors, increasing outdoor malaria transmission, lack of vector surveillance and control tools suitable for outdoor biting vectors, weakness in malaria surveillance, and an inadequate number of skilled healthcare personnel. Ecological and epidemiological changes induced by environmental modifications resulting from water resource development projects pose additional barriers to malaria control. Cognizant of these challenges, our International Center of Excellence for Malaria Research (ICEMR) works in close collaboration with relevant government ministries and agencies to align its research efforts with the objectives and strategies of the national malaria control and elimination programs for the benefit of local communities. Our overall goal is to assess the impact of water resource development projects, shifting agricultural practices, and vector interventions on Plasmodium falciparum and P. vivax malaria in Kenya and Ethiopia. From 2017 to date, the ICEMR has advanced knowledge of malaria epidemiology, transmission, immunology, and pathogenesis, and developed tools to enhance vector surveillance and control, improved clinical malaria surveillance and diagnostic methods, and strengthened the capacity of local healthcare providers. Research findings from the ICEMR will inform health policy and strategic planning by ministries of health in their quest to sustain malaria control and achieve elimination goals.
Collapse
Affiliation(s)
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia;,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Christopher L. King
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Arlene Dent
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Teshome Degefa
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kuolin Hsu
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Gordon Okomo
- Ministry of Health, Homa Bay County, Homa Bay, Kenya
| | - Lilyana Dayo
- Ministry of Health, Kisumu County, Kisumu, Kenya
| | - Kora Tushune
- Department of Health Management and Policy, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | | | - Hiwot S. Taffese
- National Malaria Program, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - James W. Kazura
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio;,Address correspondence to Guiyun Yan, Program in Public Health, University of California at Irvine, Irvine, CA, E-mail: or James Kazura, Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH, E-mail:
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California;,Address correspondence to Guiyun Yan, Program in Public Health, University of California at Irvine, Irvine, CA, E-mail: or James Kazura, Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH, E-mail:
| |
Collapse
|
9
|
Omondi CJ, Otambo WO, Odongo D, Ochwedo KO, Otieno A, Onyango SA, Orondo P, Ondeto BM, Lee MC, Zhong D, Kazura JW, Githeko AK, Yan G. Asymptomatic and submicroscopic Plasmodium infections in an area before and during integrated vector control in Homa Bay, western Kenya. Malar J 2022; 21:272. [PMID: 36153552 PMCID: PMC9509636 DOI: 10.1186/s12936-022-04288-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) have been the primary vector control strategy until indoor residual spraying (IRS) was added in Homa Bay and Migori Counties in western Kenya. The objective of this study was to evaluate the impact of LLINs integrated with IRS on the prevalence of asymptomatic and submicroscopic Plasmodium infections in Homa Bay County. METHODS A two-stage cluster sampling procedure was employed to enroll study participants aged ≥ 6 months old. Four consecutive community cross-sectional surveys for Plasmodium infection were conducted in residents of Homa Bay county, Kenya. Prior to the start of the study, all study households received LLINs, which were distributed between June 2017 and March 2018. The first (February 2018) and second (June 2018) surveys were conducted before and after the first round of IRS (Feb-Mar 2018), while the third (February 2019) and fourth (June 2019) surveys were conducted before and after the second application of IRS (February-March 2019). Finger-prick blood samples were obtained to prepare thick and thin smears for microscopic determination and qPCR diagnosis of Plasmodium genus. RESULTS Plasmodium spp. infection prevalence by microscopy was 18.5% (113/610) before IRS, 14.2% (105/737) and 3.3% (24/720) after the first round of IRS and 1.3% (11/849) after the second round of IRS (p < 0.0001). Submicroscopic (blood smear negative, qPCR positive) parasitaemia reduced from 18.9% (115/610) before IRS to 5.4% (46/849) after IRS (p < 0.0001). However, the proportion of PCR positive infections that were submicroscopic increased from 50.4% (115/228) to 80.7% (46/57) over the study period (p < 0.0001). Similarly, while the absolute number and proportions of microscopy positives which were asymptomatic decreased from 12% (73/610) to 1.2% (9/849) (p < 0.0001), the relative proportion increased. Geometric mean density of P. falciparum parasitaemia decreased over the 2-year study period (p < 0.0001). CONCLUSIONS These data suggest that two annual rounds of IRS integrated with LLINs significantly reduced the prevalence of Plasmodium parasitaemia, while the proportion of asymptomatic and submicroscopic infections increased. To reduce cryptic P. falciparum transmission and improve malaria control, strategies aimed at reducing the number of asymptomatic and submicroscopic infections should be considered.
Collapse
Affiliation(s)
- Collince J Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya.
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya.
| | - Wilfred O Otambo
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Zoology, Maseno University, Kisumu, Kenya
| | - David Odongo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
| | - Antony Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Shirley A Onyango
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - Pauline Orondo
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
| | - Benyl M Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew K Githeko
- Sub-Saharan International Center of Excellence for Malaria Research, Homa Bay, Kenya
- Climate and Human Health Research Unit, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Eisele TP, Kleinschmidt I, Sarrassat S, terKuile F, Miller J, Chanda J, Silumbe K, Samuels A, Janssen J, Ogwang C, Bradley J, Orange E, Yukich J, Ashton R, Kyomuhangi I, Harris AF, Doumbia S, Toure M, Moumine M, Majambere S, Mburu MM, Mwaanga G, Simubali L, Simulundu E, Bennett A, Slutsker L, Muller G, Ochomo E, Gimnig J, Johnson PCD, Wagman J, Littrell M. Attractive targeted sugar bait phase III trials in Kenya, Mali, and Zambia. Trials 2022; 23:640. [PMID: 35945599 PMCID: PMC9361277 DOI: 10.1186/s13063-022-06555-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) target night-time indoor biting mosquitoes and effectively reduce malaria transmission in rural settings across Africa, but additional vector control tools are needed to interrupt transmission. Attractive targeted sugar baits (ATSBs) attract and kill mosquitoes, including those biting outdoors. Deployment of ATSBs incorporating the insecticide dinotefuran was associated with major reductions in mosquito density and longevity in Mali. The impact of this promising intervention on malaria transmission and morbidity now needs to be determined in a range of transmission settings. METHODS/DESIGN We will conduct three similar stand-alone, open-label, two-arm, cluster-randomized, controlled trials (cRCTs) in Mali, Kenya, and Zambia to determine the impact of ATSB + universal vector control versus universal vector control alone on clinical malaria. The trials will use a "fried-egg" design, with primary outcomes measured in the core area of each cluster to reduce spill-over effects. All household structures in the ATSB clusters will receive two ATSBs, but the impact will be measured in the core of clusters. Restricted randomization will be used. The primary outcome is clinical malaria incidence among children aged 5-14 years in Mali and 1-14 years in Kenya and Zambia. A key secondary outcome is malaria parasite prevalence across all ages. The trials will include 76 clusters (38 per arm) in Mali and 70 (35 per arm) in each of Kenya and Zambia. The trials are powered to detect a 30% reduction in clinical malaria, requiring a total of 3850 person-years of follow-up in Mali, 1260 person-years in Kenya, and 1610 person-years in Zambia. These sample sizes will be ascertained using two seasonal 8-month cohorts in Mali and two 6-month seasonal cohorts in Zambia. In Kenya, which has year-round transmission, four 6-month cohorts will be used (total 24 months of follow-up). The design allows for one interim analysis in Mali and Zambia and two in Kenya. DISCUSSION Strengths of the design include the use of multiple study sites with different transmission patterns and a range of vectors to improve external validity, a large number of clusters within each trial site, restricted randomization, between-cluster separation to minimize contamination between study arms, and an adaptive trial design. Noted threats to internal validity include open-label design, risk of contamination between study arms, risk of imbalance of covariates across study arms, variation in durability of ATSB stations, and potential disruption resulting from the COVID-19 pandemic. TRIAL REGISTRATION Zambia: ClinicalTrials.gov NCT04800055 . Registered on March 15, 2021 Mali: ClinicalTrials.gov NCT04149119 . Registered on November 4, 2019 Kenya: ClinicalTrials.gov NCT05219565 . Registered on February 2, 2022.
Collapse
|
11
|
Ochomo EO, Gimnig JE, Bhattarai A, Samuels AM, Kariuki S, Okello G, Abong'o B, Ouma EA, Kosgei J, Munga S, Njagi K, Odongo W, Liu F, Grieco JP, Achee NL. Evaluation of the protective efficacy of a spatial repellent to reduce malaria incidence in children in western Kenya compared to placebo: study protocol for a cluster-randomized double-blinded control trial (the AEGIS program). Trials 2022; 23:260. [PMID: 35382858 PMCID: PMC8980512 DOI: 10.1186/s13063-022-06196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatial repellents are widely used for prevention of mosquito bites and evidence is building on their public health value, but their efficacy against malaria incidence has never been evaluated in Africa. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a spatial repellent incorporating transfluthrin, was developed for implementation in Busia County, western Kenya where long-lasting insecticidal net coverage is high and baseline malaria transmission is moderate to high year-round. METHODS This trial is designed as a cluster-randomized, placebo-controlled, double-blinded clinical trial. Sixty clusters will be randomly assigned in a 1:1 ratio to receive spatial repellent or placebo. A total of 6120 children aged ≥6 months to 10 years of age will be randomly selected from the study clusters, enrolled into an active cohort (baseline, cohort 1, and cohort 2), and sampled monthly to determine time to first infection by smear microscopy. Each cohort following the implementation of the intervention will be split into two groups, one to estimate direct effect of the spatial repellent and the other to estimate degree of diversion of mosquitoes and malaria transmission to unprotected persons. Malaria incidence in each cohort will be estimated and compared (primary indicator) to determine benefit of using a spatial repellent in a high, year-round malaria transmission setting. Mosquitoes will be collected monthly using CDC light traps to determine if there are entomological correlates of spatial repellent efficacy that may be useful for the evaluation of new spatial repellents. Quarterly human landing catches will assess behavioral effects of the intervention. DISCUSSION Findings will serve as the first cluster-randomized controlled trial powered to detect spatial repellent efficacy to reduce malaria in sub-Saharan Africa where transmission rates are high, insecticide-treated nets are widely deployed, and mosquitoes are resistant to insecticides. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of spatial repellents in malaria control programs. TRIAL REGISTRATION ClinicalTrials.gov NCT04766879 . Registered February 23, 2021.
Collapse
Affiliation(s)
- Eric O Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Achuyt Bhattarai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Aaron M Samuels
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Okello
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Bernard Abong'o
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Eunice A Ouma
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Jackline Kosgei
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Stephen Munga
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Kiambo Njagi
- National Malaria Control Program, Ministry of Health, Kenyatta National Hospital, Nairobi, Kenya
| | - Wycliffe Odongo
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - John P Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Nicole L Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Munywoki DN, Kokwaro ED, Mwangangi JM, Muturi EJ, Mbogo CM. Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya. Parasit Vectors 2021; 14:207. [PMID: 33879244 PMCID: PMC8056612 DOI: 10.1186/s13071-021-04706-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 11/12/2022] Open
Abstract
Background The rapid and widespread evolution of insecticide resistance has emerged as one of the major challenges facing malaria control programs in sub-Saharan Africa. Understanding the insecticide resistance status of mosquito populations and the underlying mechanisms of insecticide resistance can inform the development of effective and site-specific strategies for resistance prevention and management. The aim of this study was to investigate the insecticide resistance status of Anopheles gambiae (s.l.) mosquitoes from coastal Kenya. Methods Anopheles gambiae (s.l.) larvae sampled from eight study sites were reared to adulthood in the insectary, and 3- to 5-day-old non-blood-fed females were tested for susceptibility to permethrin, deltamethrin, dichlorodiphenyltrichloroethane (DDT), fenitrothion and bendiocarb using the standard World Health Organization protocol. PCR amplification of rDNA intergenic spacers was used to identify sibling species of the An. gambiae complex. The An. gambiae (s.l.) females were further genotyped for the presence of the L1014S and L1014F knockdown resistance (kdr) mutations by real-time PCR. Results Anopheles arabiensis was the dominant species, accounting for 95.2% of the total collection, followed by An. gambiae (s.s.), accounting for 4.8%. Anopheles gambiae (s.l.) mosquitoes were resistant to deltamethrin, permethrin and fenitrothion but not to bendiocarb and DDT. The L1014S kdr point mutation was detected only in An. gambiae (s.s.), at a low allelic frequency of 3.33%, and the 1014F kdr mutation was not detected in either An. gambiae (s.s.) or An. arabiensis. Conclusion The findings of this study demonstrate phenotypic resistance to pyrethroids and organophosphates and a low level of the L1014S kdr point mutation that may partly be responsible for resistance to pyrethroids. This knowledge may inform the development of insecticide resistance management strategies along the Kenyan Coast. ![]()
Collapse
Affiliation(s)
- Daniel N Munywoki
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya. .,Department of Zoological Sciences, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya.
| | - Elizabeth D Kokwaro
- Department of Zoological Sciences, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Joseph M Mwangangi
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N. University, St. Peoria, IL, 61604, USA
| | - Charles M Mbogo
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya.,Population Health Unit, KEMRI-Wellcome Trust Research Programme, Lenana Road, 197 Lenana Place, P.O Box 43640-00100, Nairobi, Kenya
| |
Collapse
|
13
|
Oria PA, Moshi V, Odero JI, Ekodir S, Monroe A, Harvey SA, Ochomo E, Piccinini Black D. A retail audit of mosquito control products in Busia County, western Kenya. Malar J 2021; 20:163. [PMID: 33757533 PMCID: PMC7989247 DOI: 10.1186/s12936-021-03695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/05/2022] Open
Abstract
Background Approximately 70% of Kenya’s population is at risk for malaria. The core vector control methods in Kenya are insecticide-treated mosquito nets (ITNs) and indoor residual spraying, with supplementary larval source management. In 2015, 21% of ITNs were accessed through the private retail sector. Despite the private sector role in supplying mosquito control products (MCPs), there is little evidence on the availability, sales trends, and consumer preferences for MCPs other than ITNs. This study, a component of a larger research programme focused on evaluating a spatial repellent intervention class for mosquito-borne disease control, addressed this evidence gap on the role of the private sector in supplying MCPs. Methods A cross-sectional survey was deployed in a range of retail outlets in Busia County to characterize MCP availability, sales trends, and distribution channels. The questionnaire included 32 closed-ended and four open-ended questions with short answer responses. Descriptive analysis of frequency counts and percentages was carried out to glean insights about commercially available MCPs and the weighted average rank was used to determine consumer preferences for MCPs. Open-ended data was analysed thematically. Results Retail outlets that stocked MCPs commonly stocked mosquito coils (73.0%), topical repellents (38.1%), aerosol insecticide sprays (23.8%) and ITNs (14.3%). Overall, retailers reported the profits from selling MCPs were adequate and they overwhelmingly planned to continue stocking the products. Of respondents who stocked MCPs, 96.8% responded that sales increased during long rains and 36.5% that sales also surged during short rains. ITNs and baby-size nets were often delivered by the wholesaler. Retailers of aerosol sprays, mosquito coils, and topical repellents either collected stock from the wholesaler or products were delivered to them. Other commercially available MCPs included insecticide incense sticks, electric mosquito strikers, insecticide soaps, electrically heated insecticide mats, and electric insecticide emanators, indicating a well-established market. Conclusions The wide range of MCPs in local retail outlets within the study area suggests the need and demand for mosquito control tools, in addition to ITNs, that are affordable, easy to use and effective. The presence of a wide range of MCPs, is a promising sign for the introduction of a spatial repellent intervention class of products that meets consumer needs and preferences.
Collapse
Affiliation(s)
- Prisca A Oria
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Julius I Odero
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Sheila Ekodir
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Steven A Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Ochomo
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | | |
Collapse
|
14
|
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, Lindsay SW, Smith D, Dorsey G, Donnelly MJ, Staedke SG. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J 2021; 20:138. [PMID: 33678166 PMCID: PMC7938603 DOI: 10.1186/s12936-021-03675-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. METHODS From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). RESULTS In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p < 0.001). CONCLUSIONS LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P Kigozi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - David Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place Liverpool, UK
| | | |
Collapse
|
15
|
Owuor KO, Machani MG, Mukabana WR, Munga SO, Yan G, Ochomo E, Afrane YA. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS One 2021; 16:e0240771. [PMID: 33647049 PMCID: PMC7920366 DOI: 10.1371/journal.pone.0240771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Long Lasting Insecticidal Nets (LLINs) and indoor residual spraying (IRS) represent powerful tools for controlling malaria vectors in sub-Saharan Africa. The success of these interventions relies on their capability to inhibit indoor feeding and resting of malaria mosquitoes. This study sought to understand the interaction of insecticide resistance with indoor and outdoor resting behavioral responses of malaria vectors from Western Kenya. METHODS The status of insecticide resistance among indoor and outdoor resting anopheline mosquitoes was compared in Anopheles mosquitoes collected from Kisumu and Bungoma counties in Western Kenya. The level and intensity of resistance were measured using WHO-tube and CDC-bottle bioassays, respectively. The synergist piperonyl butoxide (PBO) was used to determine if metabolic activity (monooxygenase enzymes) explained the resistance observed. The mutations at the voltage-gated sodium channel (Vgsc) gene and Ace 1 gene were characterized using PCR methods. Microplate assays were used to measure levels of detoxification enzymes if present. RESULTS A total of 1094 samples were discriminated within Anopheles gambiae s.l. and 289 within An. funestus s.l. In Kisian (Kisumu county), the dominant species was Anopheles arabiensis 75.2% (391/520) while in Kimaeti (Bungoma county) collections the dominant sibling species was Anopheles gambiae s.s 96.5% (554/574). The An. funestus s.l samples analysed were all An. funestus s.s from both sites. Pyrethroid resistance of An.gambiae s.l F1 progeny was observed in all sites. Lower mortality was observed against deltamethrin for the progeny of indoor resting mosquitoes compared to outdoor resting mosquitoes (Mortality rate: 37% vs 51%, P = 0.044). The intensity assays showed moderate-intensity resistance to deltamethrin in the progeny of mosquitoes collected from indoors and outdoors in both study sites. In Kisian, the frequency of vgsc-L1014S and vgsc-L1014F mutation was 0.14 and 0.19 respectively in indoor resting malaria mosquitoes while those of the outdoor resting mosquitoes were 0.12 and 0.12 respectively. The ace 1 mutation was present in higher frequency in the F1 of mosquitoes resting indoors (0.23) compared to those of mosquitoes resting outdoors (0.12). In Kimaeti, the frequencies of vgsc-L1014S and vgsc-L1014F were 0.75 and 0.05 respectively for the F1 of mosquitoes collected indoors whereas those of outdoor resting ones were 0.67 and 0.03 respectively. The ace 1 G119S mutation was present in progeny of mosquitoes from Kimaeti resting indoors (0.05) whereas it was absent in those resting outdoors. Monooxygenase activity was elevated by 1.83 folds in Kisian and by 1.33 folds in Kimaeti for mosquitoes resting indoors than those resting outdoors respectively. CONCLUSION The study recorded high phenotypic, metabolic and genotypic insecticide resistance in indoor resting populations of malaria vectors compared to their outdoor resting counterparts. The indication of moderate resistance intensity for the indoor resting mosquitoes is alarming as it could have an operational impact on the efficacy of the existing pyrethroid based vector control tools. The use of synergist (PBO) in LLINs may be a better alternative for widespread use in these regions recording high insecticide resistance.
Collapse
Affiliation(s)
- Kevin O. Owuor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Stephen O. Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
16
|
Omoke D, Kipsum M, Otieno S, Esalimba E, Sheth M, Lenhart A, Njeru EM, Ochomo E, Dada N. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar J 2021; 20:77. [PMID: 33557825 PMCID: PMC7869237 DOI: 10.1186/s12936-021-03606-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. Methods Using the CDC bottle bioassay, 133 2–3 day-old, virgin, non-blood fed female F1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. Results 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. Conclusions This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools.
Collapse
Affiliation(s)
- Diana Omoke
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.,Entomology Section, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Mathew Kipsum
- Entomology Section, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Samson Otieno
- Entomology Section, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Edward Esalimba
- Entomology Section, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Eric Ochomo
- Entomology Section, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Science, Aas, Norway. .,Public Health and Epidemiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria.
| |
Collapse
|
17
|
Abong'o B, Gimnig JE, Torr SJ, Longman B, Omoke D, Muchoki M, Ter Kuile F, Ochomo E, Munga S, Samuels AM, Njagi K, Maas J, Perry RT, Fornadel C, Donnelly MJ, Oxborough RM. Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya. Sci Rep 2020; 10:4518. [PMID: 32161302 PMCID: PMC7066154 DOI: 10.1038/s41598-020-61350-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Indoor residual spraying (IRS) of insecticides is a major vector control strategy for malaria prevention. We evaluated the impact of a single round of IRS with the organophosphate, pirimiphos-methyl (Actellic 300CS), on entomological and parasitological parameters of malaria in Migori County, western Kenya in 2017, in an area where primary vectors are resistant to pyrethroids but susceptible to the IRS compound. Entomological monitoring was conducted by indoor CDC light trap, pyrethrum spray catches (PSC) and human landing collection (HLC) before and after IRS. The residual effect of the insecticide was assessed monthly by exposing susceptible An. gambiae s.s. Kisumu strain to sprayed surfaces in cone assays and measuring mortality at 24 hours. Malaria case burden data were extracted from laboratory records of four health facilities within the sprayed area and two adjacent unsprayed areas. IRS was associated with reductions in An. funestus numbers in the intervention areas compared to non-intervention areas by 88% with light traps (risk ratio [RR] 0.12, 95% CI 0.07-0.21, p < 0.001) and 93% with PSC collections (RR = 0.07, 0.03-0.17, p < 0.001). The corresponding reductions in the numbers of An. arabiensis collected by PSC were 69% in the intervention compared to the non-intervention areas (RR = 0.31, 0.14-0.68, p = 0.006), but there was no significant difference with light traps (RR = 0.45, 0.21-0.96, p = 0.05). Before IRS, An. funestus accounted for over 80% of Anopheles mosquitoes collected by light trap and PSC in all sites. After IRS, An. arabiensis accounted for 86% of Anopheles collected by PSC and 66% by CDC light trap in the sprayed sites while the proportion in non-intervention sites remained unchanged. No sporozoite infections were detected in intervention areas after IRS and biting rates by An. funestus were reduced to near zero. Anopheles funestus and An. arabiensis were fully susceptible to pirimiphos-methyl and resistant to pyrethroids. The residual effect of Actellic 300CS lasted ten months on mud and concrete walls. Malaria case counts among febrile patients within IRS areas was lower post- compared to pre-IRS by 44%, 65% and 47% in Rongo, Uriri and Nyatike health facilities respectively. A single application of IRS with Actellic 300CS in Migori County provided ten months protection and resulted in the near elimination of the primary malaria vector An. funestus and a corresponding reduction of malaria case count among out-patients. The impact was less on An. arabiensis, most likely due to their exophilic nature.
Collapse
Affiliation(s)
- Bernard Abong'o
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya.
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Stephen J Torr
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Bradley Longman
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Diana Omoke
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Margaret Muchoki
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Feiko Ter Kuile
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya
| | - Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kiambo Njagi
- Kenya National Malaria Control Programme (NMCP), Ministry of Health, PO Box 19982, Kenyatta National Hospital, Nairobi, 00202, Kenya
| | - James Maas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Robert T Perry
- The United States Presidents Malaria Initiative (PMI), US Embassy Nairobi, United Nations Avenue, Nairobi, Kenya
| | - Christen Fornadel
- The United States Presidents Malaria Initiative (PMI), US Agency for International Development, Washington, DC, USA
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Richard M Oxborough
- PMI VectorLink Project, Abt Associates 6130 Executive Blv, Rockville, MD, 20852, USA
| |
Collapse
|
18
|
Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, Zhou G, Githeko AK, Yan G, Afrane YA. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS One 2020; 15:e0224718. [PMID: 32097407 PMCID: PMC7041793 DOI: 10.1371/journal.pone.0224718] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Jackline Kosgei
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
19
|
Species Composition, Phenotypic and Genotypic Resistance Levels in Major Malaria Vectors in Teso North and Teso South Subcounties in Busia County, Western Kenya. J Parasitol Res 2020; 2020:3560310. [PMID: 32411419 PMCID: PMC7204121 DOI: 10.1155/2020/3560310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. Materials and Methods For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. Results Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ < 0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option.
Collapse
|
20
|
Karungu S, Atoni E, Ogalo J, Mwaliko C, Agwanda B, Yuan Z, Hu X. Mosquitoes of Etiological Concern in Kenya and Possible Control Strategies. INSECTS 2019; 10:E173. [PMID: 31208124 PMCID: PMC6627689 DOI: 10.3390/insects10060173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country's economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.
Collapse
Affiliation(s)
- Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Joseph Ogalo
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museum of Kenya, P.O. Box 40658, Nairobi 00100, Kenya.
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
21
|
Xu J, Su X, Bonizzoni M, Zhong D, Li Y, Zhou G, Nguyen H, Tong S, Yan G, Chen XG. Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Negl Trop Dis 2018; 12:e0006828. [PMID: 30418967 PMCID: PMC6258463 DOI: 10.1371/journal.pntd.0006828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/26/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Wide and improper application of pyrethroid insecticides for mosquito control has resulted in widespread resistance in Aedes albopictus mosquitoes, an important dengue vector. Therefore, understanding the molecular regulation of insecticide resistance is urgently needed to provide a basis for developing novel resistance diagnostic methods and vector control approaches. We investigated the transcriptional profiles of deltamethrin-resistant and -susceptible Ae. albopictus by performing paired-end sequencing for RNA expression analysis. The analysis used 24 independent libraries constructed from 12 wild-caught resistant and 12 susceptible Ae. albopictus female adults. A total of 674,503,592 and 612,512,034 reads were obtained, mapped to the Ae. albopictus genome and assembled into 20,091 Ae. albopictus transcripts. A total of 1,130 significantly differentially expressed genes included 874 up-regulated genes and 256 down-regulated genes in the deltamethrin-resistant individuals. These differentially expressed genes code for cytochrome P450s, cuticle proteins, glutathione S-transferase, serine proteases, heat shock proteins, esterase, and others. We selected three highly differentially expressed candidate genes, CYP6A8 and two genes of unknown function (CCG013931 and CCG000656), to test the association between these 3 genes and deltamethrin resistance using RNAi through microinjection in adult mosquitoes and oral feeding in larval mosquitoes. We found that expression knockdown of these three genes caused significant changes in resistance. Further, we detected 1,162 single nucleotide polymorphisms (SNPs) with a frequency difference of more than 50%. Among them, 5 SNPs in 4 cytochrome P450 gene families were found to be significantly associated with resistance in a genotype-phenotype association study using independent field-collected mosquitoes of known resistance phenotypes. Altogether, a combination of novel individually based transcriptome profiling, RNAi, and genetic association study identified both differentially expressed genes and SNPs associated with pyrethroid resistance in Ae. albopictus mosquitoes, and laid a useful foundation for further studies on insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Jiabao Xu
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinghua Su
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Daibin Zhong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Yiji Li
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Translational Medicine Tropical Diseases of Ministry of Education and Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Hoan Nguyen
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Sarah Tong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Guiyun Yan
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Xiao-Guang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: trends in pyrethroid resistance during a WHO-coordinated multi-country prospective study. Parasit Vectors 2018; 11:550. [PMID: 30348209 PMCID: PMC6198431 DOI: 10.1186/s13071-018-3101-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Increasing pyrethroid resistance has been an undesirable correlate of the rapid increase in coverage of insecticide-treated nets (ITNs) since 2000. Whilst monitoring of resistance levels has increased markedly over this period, longitudinal monitoring is still lacking, meaning the temporal and spatial dynamics of phenotypic resistance in the context of increasing ITN coverage are unclear. METHODS As part of a large WHO-co-ordinated epidemiological study investigating the impact of resistance on malaria infection, longitudinal monitoring of phenotypic resistance to pyrethroids was undertaken in 290 clusters across Benin, Cameroon, India, Kenya and Sudan. Mortality in response to pyrethroids in the major anopheline vectors in each location was recorded during consecutive years using standard WHO test procedures. Trends in mosquito mortality were examined using generalised linear mixed-effect models. RESULTS Insecticide resistance (using the WHO definition of mortality < 90%) was detected in clusters in all countries across the study period. The highest mosquito mortality (lowest resistance frequency) was consistently reported from India, in an area where ITNs had only recently been introduced. Substantial temporal and spatial variation was evident in mortality measures in all countries. Overall, a trend of decreasing mosquito mortality (increasing resistance frequency) was recorded (Odds Ratio per year: 0.79 per year (95% CI: 0.79-0.81, P < 0.001). There was also evidence that higher net usage was associated with lower mosquito mortality in some countries. DISCUSSION Pyrethroid resistance increased over the study duration in four out of five countries. Insecticide-based vector control may be compromised as a result of ever higher resistance frequencies.
Collapse
|
23
|
Kahindi SC, Muriu S, Derua YA, Wang X, Zhou G, Lee MC, Mwangangi J, Atieli H, Githeko AK, Yan G. Efficacy and persistence of long-lasting microbial larvicides against malaria vectors in western Kenya highlands. Parasit Vectors 2018; 11:438. [PMID: 30064498 PMCID: PMC6069807 DOI: 10.1186/s13071-018-3009-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background Chemical-based malaria vector control interventions are threatened by the development of insecticide resistance and changes in the behavior of the vectors, and thus require the development of alternative control methods. Bacterial-based larvicides have the potential to target both insecticide resistant and outdoor-biting mosquitoes and are safe to use in the environment. However, the currently available microbial larvicide formulations have a short duration of activity requiring frequent re-applications which increase the cost of control interventions. This study was designed to evaluate the efficacy and duration of activity of two long-lasting formulations of Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (LL3 and FourStar®) under field conditions in western Kenya highlands. Methods Three sites were selected for this study in the highlands of western Kenya. In each site, one hundred anopheline larval habitats were selected and assigned to one of three arms: (i) LL3; (ii) FourStar®; and (iii) untreated control larval habitats. Four types of larval habitats were surveyed: abandoned gold mines, drainage canals, fish ponds and non-fish ponds. The habitats were sampled for mosquito larvae by using a standard dipping technique and collected larvae were recorded according to the larval stages of the different Anopheles species. The larvicides were applied at manufacturers’ recommended dosage of 1 briquette per 100 square feet. Both treatment and control habitats were sampled for mosquito larvae immediately before treatment (day 0), and then at 24 hours, 3 days and weekly post-treatment for 5 months. Results Overall larval density in treatment habitats was significantly reduced after application of the two microbial larvicides as compared to the control habitats. Post-intervention reduction in anopheline larval density by LL3 was 65, 71 and 84% for 1 day, 2 weeks and 4 weeks, respectively. FourStar® reduced anopheline larval density by 60, 66 and 80% for 1 day, 2 weeks and 4 weeks, respectively. Comparisons between the treatments reveal that LL3 and FourStar® were similar in efficacy. A higher reduction in Anopheles larval density was observed in the abandoned goldmines, while drainage canals had the lowest reduction. Conclusions Both LL3 and FourStar® long-lasting microbial larvicides were effective in reducing immature stages of An. gambiae complex and An. funestus group species, with significant reductions lasting for three months post-application.
Collapse
Affiliation(s)
- Samuel C Kahindi
- School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya.,Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Simon Muriu
- School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Yahya A Derua
- Kilimanjaro Christian Medical University College, Tumaini University Makumira, Moshi, Tanzania
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Joseph Mwangangi
- Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | | | - Andrew K Githeko
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Zoh DD, Ahoua Alou LP, Toure M, Pennetier C, Camara S, Traore DF, Koffi AA, Adja AM, Yapi A, Chandre F. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké, Côte d'Ivoire. Parasit Vectors 2018; 11:118. [PMID: 29499720 PMCID: PMC5834858 DOI: 10.1186/s13071-018-2702-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/07/2018] [Indexed: 11/26/2022] Open
Abstract
Background Several studies were carried out in experimental hut station in areas surrounding the city of Bouaké, after the crisis in Côte d’Ivoire. They reported increasing resistance levels to insecticide for malaria transmiting mosquitoes. The present work aims to evaluate the current resistance level of An. gambiae(s.l.) in rural and urban areas in the city of Bouaké. Methods Larvae of Anopheles gambiae (s.l.) were collected from five different study sites and reared to adult stages. The resistance status was assessed using the WHO bioassay test kits for adult mosquitoes, with eight insecticides belonging to pyrethroids, organochlorines, carbamates and organophosphates classes. Molecular assays were performed to identify the molecular forms of An. gambiae (s.l.), the L1014F kdr and the ace-1R alleles in individual mosquitoes. The synergist PBO was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed function oxidase (MFO) levels, non-specific esterases (NSE) and glutathione S-transferases (GST). Results High resistance levels to pyrethroids, organochlorines, and carbamates were observed in Anopheles gambiae (s.l.) from Bouaké. Mortalities ranged between 0 and 73% for the eight tested insecticides. The pre-exposure to PBO restored full or partial susceptibility to pyrethroids in the different sites. The same trend was observed with the carbamates in five sites, but to a lesser extent. With DDT, pre-exposure to PBO did not increase the mortality rate of An. gambiae (s.l.) from the same sites. Tolerance to organophosphates was observed. An increased activity of NSE and higher level of MFO were found compared to the Kisumu susceptible reference strain. Two molecular forms, S form [(An. gambiae (s.s)] and M form (An. coluzzi) were identified. The kdr allele frequencies vary from 85.9 to 99.8% for An. gambiae (s.s.) and from 81.7 to 99.6% for An. coluzzii. The ace-1R frequencies vary between 25.6 and 38.8% for An. gambiae (s.s.) and from 28.6 to 36.7% for An. coluzzii. Conclusion Resistance to insecticides is widespread within both An. gambiae (s.s.) and An. coluzzii. Two mechanisms of resistance, i.e. metabolic and target-site mutation seemed to largely explain the high resistance level of mosquitoes in Bouaké. Pyrethroid resistance was found exclusively due to the metabolic mechanism.
Collapse
Affiliation(s)
- Dounin Danielle Zoh
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire. .,Université Félix Houphouët Boigny, 08 BP 3800, Abidjan, 08, Côte d'Ivoire.
| | | | - Mahama Toure
- Centre d'Entomologie Médicale et Vétérinaire, 27 BP 529, Abidjan, 27, Côte d'Ivoire
| | - Cédric Pennetier
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire.,MIVEGEC, Institut de Recherche pour le Développement - CNRS - University Montpellier, Délégation Occitanie, 911 Av. Agropolis, Montpellier, France
| | - Soromane Camara
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire.,Université Félix Houphouët Boigny, 08 BP 3800, Abidjan, 08, Côte d'Ivoire
| | - Dipomin François Traore
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire.,Centre d'Entomologie Médicale et Vétérinaire, 27 BP 529, Abidjan, 27, Côte d'Ivoire
| | | | - Akré Maurice Adja
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire.,Université Félix Houphouët Boigny, 08 BP 3800, Abidjan, 08, Côte d'Ivoire
| | - Ahoua Yapi
- Institut Pierre Richet, 01 BP 1500, Bouaké, 01, Côte d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, Institut de Recherche pour le Développement - CNRS - University Montpellier, Délégation Occitanie, 911 Av. Agropolis, Montpellier, France
| |
Collapse
|
25
|
Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae. Sci Rep 2018; 8:2920. [PMID: 29440767 PMCID: PMC5811533 DOI: 10.1038/s41598-018-21265-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype.
Collapse
|
26
|
Kiuru CW, Oyieke FA, Mukabana WR, Mwangangi J, Kamau L, Muhia-Matoke D. Status of insecticide resistance in malaria vectors in Kwale County, Coastal Kenya. Malar J 2018; 17:3. [PMID: 29304805 PMCID: PMC5755433 DOI: 10.1186/s12936-017-2156-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022] Open
Abstract
Background The strategy for malaria vector control in the context of reducing malaria morbidity and mortality has been the scale-up of long-lasting insecticidal nets to universal coverage and indoor residual spraying. This has led to significant decline in malaria transmission. However, these vector control strategies rely on insecticides which are threatened by insecticide resistance. In this study the status of pyrethroid resistance in malaria vectors and it’s implication in malaria transmission at the Kenyan Coast was investigated. Results Using World Health Organization diagnostic bioassay, levels of phenotypic resistance to permethrin and deltamethrin was determined. Anopheles arabiensis showed high resistance to pyrethroids while Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus showed low resistance and susceptibility, respectively. Anopheles gambiae sensu lato (s.l.) mosquitoes were further genotyped for L1014S and L1014F kdr mutation by real time PCR. An allele frequency of 1.33% for L1014S with no L1014F was detected. To evaluate the implication of pyrethroid resistance on malaria transmission, Plasmodium falciparum infection rates in field collected adult mosquitoes was determined using enzyme linked immunosorbent assay and further, the behaviour of the vectors was assessed by comparing indoor and outdoor proportions of mosquitoes collected. Sporozoite infection rate was observed at 4.94 and 2.60% in An. funestus s.l. and An. gambiae s.l., respectively. A higher density of malaria vectors was collected outdoor and this also corresponded with high Plasmodium infection rates outdoor. Conclusions This study showed phenotypic resistance to pyrethroids and low frequency of L1014S kdr mutation in An. gambiae s.l. The occurrence of phenotypic resistance with low levels of kdr frequencies highlights the need to investigate other mechanisms of resistance. Despite being susceptible to pyrethroids An. funestus s.l. could be driving malaria infections in the area.
Collapse
Affiliation(s)
- Caroline W Kiuru
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Florence Awino Oyieke
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Wolfgang Richard Mukabana
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,Man & Well-Being Research Office, Science for Health, P.O. Box 44970, Nairobi, 00100, Kenya
| | - Joseph Mwangangi
- Department of Biological Sciences, Pwani University, Kilifi, Kenya.,KEMRI-Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Luna Kamau
- KEMRI-Centre for Biotechnology Research and Development, Nairobi, Kenya
| | | |
Collapse
|
27
|
Omondi S, Mukabana WR, Ochomo E, Muchoki M, Kemei B, Mbogo C, Bayoh N. Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya. Parasit Vectors 2017; 10:548. [PMID: 29110724 PMCID: PMC5674850 DOI: 10.1186/s13071-017-2489-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background The development and spread of resistance among local vectors to the major classes of insecticides used in Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) poses a major challenge to malaria vector control programs worldwide. The main methods of evaluating insecticide resistance in malaria vectors are the WHO tube bioassay and CDC bottle assays, with their weakness being determination of resistance at a fixed dose for variable populations. The CDC bottle assay using different insecticide dosages has proved applicable in ascertaining the intensity of resistance. Methods We determined the status and intensity of permethrin resistance and investigated the efficacy of commonly used LLINs (PermaNet® 2.0, PermaNet® 3.0 and Olyset®) against 3–5 day-old adult female Anopheles mosquitoes from four sub-counties; Teso, Bondo, Rachuonyo and Nyando in western Kenya. Knockdown was assessed to 4 doses of permethrin; 1× (21.5 μg/ml), 2× (43 μg/ml), 5× (107.5 μg/ml) and 10× (215 μg/ml) using CDC bottle assays. Results Mortality for 0.75% permethrin ranged from 23.5% to 96.1% in the WHO tube assay. Intensity of permethrin resistance was highest in Barkanyango Bondo, with 84% knockdown at the 30 min diagnostic time when exposed to the 10× dose. When exposed to the LLINs, mortality ranged between— 0–39% for Olyset®, 12–88% for PermaNet® 2.0 and 26–89% for PermaNet® 3.0. The efficacy of nets was reduced in Bondo and Teso. Results from this study show that there was confirmed resistance in all the sites; however, intensity assays were able to differentiate Bondo and Teso as the sites with the highest levels of resistance, which coincidentally were the two sub-counties with reduced net efficacy. Conclusions There was a reduced efficacy of nets in areas with high resistance portraying that at certain intensities of resistance, vector control using LLINs may be compromised. It is necessary to incorporate intensity assays in order to determine the extent of threat that resistance poses to malaria control. Electronic supplementary material The online version of this article (10.1186/s13071-017-2489-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seline Omondi
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya. .,Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya.
| | - Wolfgang Richard Mukabana
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.,Science for Health, P.O Box 44970-00100, Nairobi, Kenya
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Margaret Muchoki
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Brigid Kemei
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Charles Mbogo
- KEMRI-Centre for Geographic Medicine Research-Coast, P.O Box 230-80108, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Program, P.O Box 43640-00100, Nairobi, Kenya
| | - Nabie Bayoh
- US Centers for Disease Control and Prevention-Kenya, P.O Box 1578-40100, Kisumu, Kenya
| |
Collapse
|
28
|
Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, Koekemoer LL, Okumu FO. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res 2017; 2:96. [PMID: 29417094 PMCID: PMC5782413 DOI: 10.12688/wellcomeopenres.12617.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in
Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male
An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015) and wet (January-May 2016) seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F (
kdr-w) and L1014S (
kdr-e) mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO) and triphenol phosphate (TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in
An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in
An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of
kdr alleles suggest involvement of P450 monooxygenases and esterases in the resistant phenotypes. We recommend, for effective resistance management, further bioassays to quantify the strength of resistance, and both biochemical and molecular analysis to elucidate specific enzymes responsible in resistance.
Collapse
Affiliation(s)
- Nancy S Matowo
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Givemore Munhenga
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Marcel Tanner
- University of Basel, Basel, 4001, Switzerland.,Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Wim F Feringa
- Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, 7522 NB, Netherlands
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| |
Collapse
|
29
|
Ondeto BM, Nyundo C, Kamau L, Muriu SM, Mwangangi JM, Njagi K, Mathenge EM, Ochanda H, Mbogo CM. Current status of insecticide resistance among malaria vectors in Kenya. Parasit Vectors 2017; 10:429. [PMID: 28927428 PMCID: PMC5606043 DOI: 10.1186/s13071-017-2361-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Christopher Nyundo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Luna Kamau
- KEMRI, Centre for Biotechnology Research and Development, Nairobi, Kenya
| | - Simon M. Muriu
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Joseph M. Mwangangi
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kiambo Njagi
- Ministry of Health, Malaria Control Unit, Nairobi, Kenya
| | - Evan M. Mathenge
- KEMRI, Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Horace Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles M. Mbogo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
30
|
Nnko EJ, Kihamia C, Tenu F, Premji Z, Kweka EJ. Insecticide use pattern and phenotypic susceptibility of Anopheles gambiae sensu lato to commonly used insecticides in Lower Moshi, northern Tanzania. BMC Res Notes 2017; 10:443. [PMID: 28877733 PMCID: PMC5585946 DOI: 10.1186/s13104-017-2793-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Evidence of insecticide resistance has been documented in different malaria endemic areas. Surveillance studies to allow prompt investigation of associated factors to enable effective insecticide resistance management are needed. The objective of this study was to assess insecticide use pattern and phenotypic susceptibility level of Anopheles gambiae sensu lato to insecticides commonly used in malaria control in Moshi, northern Tanzania. METHODS A cross-sectional survey was conducted to assess insecticide usage pattern. Data was collected was through closed and open ended questionnaires The WHO diagnostic standard kit with doses of 0.1% bendiocarb, 0.05% deltamethrin, 0.75% permethrin and 4% DDT were used to detect knockdown time, mortality and resistance ratio of wild A. gambiae sensu lato. The questionnaire survey data was analyzed using descriptive statistics and one-way analysis of variance while susceptibility data was analysed by logistic regression with probit analysis using SPSS program. The WHO criteria was used to evaluate the resistance status of the tested mosquito populations. RESULTS A large proportion of respondents (80.8%) reported to have used insecticide mainly for farming purposes (77.3%). Moreover, 93.3% of household reported usage of long lasting insecticidal nets. The frequently used class of insecticide was organophosphate with chloropyrifos as the main active ingredients and dursban was the brand constantly reported. Very few respondents (24.1%) applied integrated vector control approaches of and this significantly associated with level of knowledge of insecticide use (P < 0.001). Overall knockdown time for A. gambiae s.l was highest in DDT, followed by Pyrethroids (Permethrin and deltamethrin) and lowest in bendiocarb. Anopheles gambiae s.l showed susceptibility to bendiocarb, increased tolerance to permethrin and resistant to deltamethrin. The most effective insecticide against the population from tested was bendiocarb, with a resistance ratio ranging between 0.93-2.81. CONCLUSION Education on integrated vector management should be instituted and a policy change on insecticide of choice for malaria vector control from pyrethroids to carbamates (bendiocarb) is recommended. Furthermore, studies to detect cross resistance between pyrethroids and organophosphates should be carried out.
Collapse
Affiliation(s)
- Elinas J. Nnko
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Charles Kihamia
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Filemoni Tenu
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, P.O. Box 81, Tanga, Tanzania
| | - Zul Premji
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Eliningaya J. Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Health Disease Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464 Mwanza, Tanzania
| |
Collapse
|
31
|
Ochomo E, Chahilu M, Cook J, Kinyari T, Bayoh NM, West P, Kamau L, Osangale A, Ombok M, Njagi K, Mathenge E, Muthami L, Subramaniam K, Knox T, Mnavaza A, Donnelly MJ, Kleinschmidt I, Mbogo C. Insecticide-Treated Nets and Protection against Insecticide-Resistant Malaria Vectors in Western Kenya. Emerg Infect Dis 2017; 23:758-764. [PMID: 28418293 PMCID: PMC5403037 DOI: 10.3201/eid2305.161315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9–2.5) infections/person-year and 2.8 (95% CI 2.5–3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42–0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35–0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.
Collapse
|
32
|
Alout H, Labbé P, Chandre F, Cohuet A. Malaria Vector Control Still Matters despite Insecticide Resistance. Trends Parasitol 2017; 33:610-618. [PMID: 28499699 DOI: 10.1016/j.pt.2017.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance.
Collapse
Affiliation(s)
- Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France.
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France
| | - Fabrice Chandre
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France
| | - Anna Cohuet
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France.
| |
Collapse
|
33
|
Kweka EJ, Lyaruu LJ, Mahande AM. Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania. Infect Dis Poverty 2017; 6:11. [PMID: 28095897 PMCID: PMC5242039 DOI: 10.1186/s40249-016-0220-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. METHODS Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. RESULTS Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. CONCLUSIONS Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| | - Lucile J Lyaruu
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania
| | - Aneth M Mahande
- Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, Mabogini field station, Moshi, Tanzania
| |
Collapse
|
34
|
Lynch PA, Boots M. Using evolution to generate sustainable malaria control with spatial repellents. eLife 2016; 5. [PMID: 27776220 PMCID: PMC5089865 DOI: 10.7554/elife.15416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Evolution persistently undermines vector control programs through insecticide resistance. Here we propose a novel strategy which instead exploits evolution to generate and sustain new control tools. Effective spatial repellents are needed to keep vectors out of houses. Our approach generates such new repellents by combining a high-toxicity insecticide with a candidate repellent initially effective against only part of the vector population. By killing mosquitoes that enter treated properties the insecticide selects for vector phenotypes deflected by the repellent, increasing efficacy of the repellent against the target vector population and in turn protecting the insecticide against the spread of insecticide resistance. Using such evolved spatial repellents offers an evolutionarily sustainable, ‘double-dip’ system of disease control combining mortality and repellence. We formalize this idea using models which explore vector population genetics and disease transmission probabilities and show that using evolved spatial repellents is theoretically achievable, effective and sustainable. DOI:http://dx.doi.org/10.7554/eLife.15416.001 Many of the mosquito species that transmit malaria have evolved to bite humans indoors at night, and therefore health programs target them using insecticides sprayed on surfaces inside people’s homes. This strategy, however, stops working when mosquito populations evolve to resist the insecticide used, either because they are immune to its poisonous effects or because they change their behaviour to avoid it. Consequently, there is now a need to develop alternative strategies to control mosquitoes that are more sustainable in the face of evolution. One possibility is repellents that keep mosquitoes out of homes. Lynch and Boots have now asked whether evolution could be used to create effective repellents from substances that initially repel only part of the mosquito population by pairing them with lethal insecticides sprayed inside people’s homes. Mathematical models showed that, before insecticide resistance becomes widespread, this “evolved repellence” approach could reduce the spread of malaria by a similar amount to using insecticides alone. This was particularly true if the models considered that, as well as surviving to give fewer infectious bites, repelled infectious mosquitoes may be less likely to transmit malaria with each feed, for example if they feed more on livestock rather than humans. The models of Lynch and Boots also show that that the success of the evolved repellence concept in a given location depends on a number of factors. The proportion of the starting mosquito population that is repelled or resistant can have a large effect. Similarly, success will also depend on how likely normal, repelled and insecticide-resistant mosquitoes are to reproduce successfully. These values can be influenced by the choice of insecticide and repellent and how the chemicals are applied. Lynch and Boots show that swapping insecticides can allow an evolved repellent to be established where it would otherwise not succeed. Also, the spread of resistance to the paired insecticide is slowed or prevented when the mosquito population evolves to be repelled. Practical laboratory and field- work is now needed to build on this theoretical groundwork and to determine suitable locations and application strategies to exploit this concept as a way to sustainably reduce the spread of malaria in the future. DOI:http://dx.doi.org/10.7554/eLife.15416.002
Collapse
Affiliation(s)
- Penelope Anne Lynch
- Department of Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Mike Boots
- Department of Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom.,Department of Integrative Biology, University of California, Berkeley, United States
| |
Collapse
|
35
|
Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, Osoti V, Makori E, Owaga C, Odongo W, China P, Shagari S, Doumbo OK, Sauerwein RW, Kariuki S, Drakeley C, Stevenson J, Cox J. The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial. PLoS Med 2016; 13:e1001993. [PMID: 27071072 PMCID: PMC4829260 DOI: 10.1371/journal.pmed.1001993] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. METHODS AND FINDINGS Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June-6 July 2012) and 16 wk (21 August-10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI -1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. CONCLUSIONS Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. TRIAL REGISTRATION ClinicalTrials.gov NCT01575613.
Collapse
Affiliation(s)
- Teun Bousema
- Radboud Institute for Health Sciences, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Gillian Stresman
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Amrish Y. Baidjoe
- Radboud Institute for Health Sciences, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Philip Knight
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - William Stone
- Radboud Institute for Health Sciences, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Victor Osoti
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Euniah Makori
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Chrispin Owaga
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Wycliffe Odongo
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Pauline China
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Shehu Shagari
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Robert W. Sauerwein
- Radboud Institute for Health Sciences, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simon Kariuki
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Chris Drakeley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jennifer Stevenson
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jonathan Cox
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Dixit A, Lee MC, Goettsch B, Afrane Y, Githeko AK, Yan G. Discovering the cost of care: consumer, provider, and retailer surveys shed light on the determinants of malaria health-seeking behaviours. Malar J 2016; 15:179. [PMID: 27006074 PMCID: PMC4802645 DOI: 10.1186/s12936-016-1232-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/11/2016] [Indexed: 11/21/2022] Open
Abstract
Background The growing threat of insecticide resistance in mosquitoes and drug resistance in the Plasmodium parasites increases the importance of ensuring appropriate malaria case management and enabling positive health-seeking behaviour. Treatment-seeking behaviours are poorly characterized in malaria-endemic regions that have been the focus of intensive control and elimination campaigns. This study uses a comprehensive approach to shed light on the determinants of malaria treatment-seeking behaviours from different perspectives. Methods The authors conducted cross-sectional surveys from 832 households, fifteen health centers, and 135 retailers across three sites in the Emuhaya and Kakamega districts of the western Kenyan highlands. Participants were recruited via random sampling and data were collected with the use of a structured questionnaire about malaria treatment-seeking behaviour. All households, healthcare facilities, and retailers were mapped using a handheld GPS and a GIS algorithm was used to calculate “walk distance” based on the Tobler rule; an estimate of this distance was used to calculate the travel time used in the analyses. Results Across the three sites, 47.5–78.9 % of the residents sought diagnosis and treatment at hospitals, clinics, or dispensaries; 6.3–26.1 % of the residents sought malaria care only at pharmaceutical retailers. Overall, 40.3–59.4 % of residents reported delaying seeking care for more than 24 h after fever onset. After adjustment, residents who chose to visit a pharmaceutical retail facility rather than a hospital were 121 and 307 % more likely to delay seeking medical care after fever onset than those who reported choosing a healthcare facility for treatment. No significant association was found between travel time and delay in seeking care. The surveys of the healthcare facilities indicated an average total cost per patient per visit was 112 KES ($1.40 US) for public facilities and 165 KES ($2.06 US) for private facilities. Conclusion Understanding the local health behaviours that perpetuate transmission of malaria will help develop targeted preventive measures and educational interventions that can empower the residents with the knowledge needed to combat malaria in a safe and effective manner. Ensuring patient access to health care facilities in countries with high disease burdens has broader implications on measures of equity and on public health prevention methodologies. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1232-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amruta Dixit
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | | | - Yaw Afrane
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Opondo KO, Weetman D, Jawara M, Diatta M, Fofana A, Crombe F, Mwesigwa J, D'Alessandro U, Donnelly MJ. Does insecticide resistance contribute to heterogeneities in malaria transmission in The Gambia? Malar J 2016; 15:166. [PMID: 26980461 PMCID: PMC4793517 DOI: 10.1186/s12936-016-1203-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria hotspots, areas with consistently higher than average transmission, may become increasingly common as malaria declines. This phenomenon, currently observed in The Gambia, may be caused by several factors, including some related to the local vectors, whose contribution is poorly understood. METHODS Using WHO susceptibility bioassays, insecticide resistance status was determined in vector populations sampled from six pairs of villages across The Gambia, each pair contained a low and high prevalence village. RESULTS Three vector species were observed (23.5% Anopheles arabiensis, 31.2% Anopheles gambiae, 43.3% Anopheles coluzzii and 2.0% An. coluzzii × An. gambiae hybrids). Even at a fine scale, significant differences in species composition were detected within village pairs. Resistance to both DDT and deltamethrin was more common in An. gambiae, most markedly in the eastern part of The Gambia and partly attributable to differing frequencies of resistance mutations. The Vgsc-1014F target site mutation was strongly associated with both DDT (OR = 256.7, (95% CI 48.6-6374.3, p < 0.001) and deltamethrin survival (OR = 9.14, (95% CI 4.24-21.4, p < 0.001). A second target site mutation, Vgsc-1575Y, which co-occurs with Vgsc-1014F, and a metabolic marker of resistance, Gste2-114T, conferred additional survival benefits to both insecticides. DDT resistance occurred significantly more frequently in villages with high malaria prevalence (p = 0.025) though this did not apply to deltamethrin resistance. CONCLUSION Whilst causality of relationships requires further investigation, variation in vector species and insecticide resistance in The Gambia is associated with malaria endemicity; with a notably higher prevalence of infection and insecticide resistance in the east of the country. In areas with heterogeneous malaria transmission, the role of the vector should be investigated to guide malaria control interventions.
Collapse
Affiliation(s)
- Kevin Ochieng' Opondo
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Musa Jawara
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia
| | - Mathurin Diatta
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia
| | - Amfaal Fofana
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia
| | - Florence Crombe
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Mwesigwa
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, PO Box 273, Banjul, The Gambia.,London School of Hygiene and Tropical Medicine, London, UK.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. .,London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
38
|
Gimnig JE, Otieno P, Were V, Marwanga D, Abong’o D, Wiegand R, Williamson J, Wolkon A, Zhou Y, Bayoh MN, Lobo NF, Laserson K, Kariuki S, Hamel MJ. The Effect of Indoor Residual Spraying on the Prevalence of Malaria Parasite Infection, Clinical Malaria and Anemia in an Area of Perennial Transmission and Moderate Coverage of Insecticide Treated Nets in Western Kenya. PLoS One 2016; 11:e0145282. [PMID: 26731524 PMCID: PMC4701193 DOI: 10.1371/journal.pone.0145282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background Insecticide treated nets (ITNs) and indoor residual spraying (IRS) have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55–65% use of any net the previous night). Methods The Kenya Division of Malaria Control, with support from the US President’s Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever) and anemia (Hb<8) of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset. Results At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22–0.59, p<0.001). The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20–0.68, p = 0.001). The prevalence of anemia was lower in the IRS district but only in children under 5 years of age (2.8% vs. 9.3%, OR = 0.30, 95% CI = 0.13–0.71, p = 0.006). Multivariate models incorporating both IRS and ITNs indicated that both had an impact on malaria parasitemia and clinical malaria but the independent effect of ITNs was reduced in the district that had received two rounds of IRS. There was no statistically significant independent effect of ITNs on the prevalence of anemia in any age group. Conclusions Both IRS and ITNs are effective tools for reducing malaria burden and when implemented in an area of moderate to high transmission with moderate ITN coverage, there may be an added benefit of IRS. The value of adding ITNs to IRS is less clear as their benefits may be masked by IRS. Additional monitoring of malaria control programs that implement ITNs and IRS concurrently is encouraged to better understand how to maximize the benefits of both interventions, particularly in the context of increasing pyrethroid resistance.
Collapse
Affiliation(s)
- John E. Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Peter Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Doris Marwanga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daisy Abong’o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ryan Wiegand
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John Williamson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adam Wolkon
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ying Zhou
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - M. Nabie Bayoh
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Neil F. Lobo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kayla Laserson
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Mary J. Hamel
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
39
|
Comparing insecticide-treated bed net use to Plasmodium falciparum infection among schoolchildren living near Lake Victoria, Kenya. Malar J 2015; 14:515. [PMID: 26696416 PMCID: PMC4688986 DOI: 10.1186/s12936-015-1031-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Under trial conditions insecticide-treated nets have been shown to provide significant clinical and mortality protection under a range of malaria transmission intensity conditions. There are, however, few operational impact data, notably in very intense transmission conditions. This study, reports on malaria infection among Kenyan schoolchildren living in areas of intense malaria transmission and their reported use of insecticide-treated bed nets. Methods 5188 children in 54 schools were randomly sampled from seven counties surrounding Lake Victoria between May and June 2014. A questionnaire was administered to schoolchildren in classes 2–6 on the use of a long-lasting, insecticide-treated net (LLIN) the night before the survey and provided a single blood sample for a rapid diagnostic test for malaria infection. Analysis of the impact of insecticide-treated net use on malaria prevalence was undertaken using a multivariable, mixed effects, logistic regression at 95 % confidence interval (CI), taking into account hierarchical nature of the data and results adjusted for school clusters. Results The overall prevalence of malaria infection was 48.7 %, two-thirds (67.9 %) of the children reported using LLIN, 91.3 % of the children reported that their households own at least one LLIN and the household LLIN coverage was 2.5 persons per one LLIN. The prevalence of infection showed variation across the counties, with prevalence being highest in Busia (66.9 %) and Homabay (51.8 %) counties, and lowest in Migori County (29.6 %). Generally, malaria parasite prevalence differed between age groups and gender with the highest prevalence occurring in children below 7 years (50.6 %) and males (52.2 %). Adjusting for county and school, there was a significant reduction in odds of malaria infection among the schoolchildren who reported LLIN use the previous night by 14 % (aOR 0.86, 95 % CI 0.74–0.98, P < 0.027). Conclusion Malaria transmission continues to be high around Lake Victoria. Despite evidence of increasing pyrethroid resistance and the likely overall efficacy of LLIN distributed several years prior to the survey, LLIN continue to provide protection against infection among school-aged children. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1031-6) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Ochomo E, Subramaniam K, Kemei B, Rippon E, Bayoh NM, Kamau L, Atieli F, Vulule JM, Ouma C, Gimnig J, Donnelly MJ, Mbogo C. Presence of the knockdown resistance mutation, Vgsc-1014F in Anopheles gambiae and An. arabiensis in western Kenya. Parasit Vectors 2015; 8:616. [PMID: 26626424 PMCID: PMC4666190 DOI: 10.1186/s13071-015-1223-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction The voltage gated sodium channel mutation Vgsc-1014S (kdr-east) was first reported in Kenya in 2000 and has since been observed to occur at high frequencies in the local Anopheles gambiae s.s. population. The mutation Vgsc-1014F has never been reported from An. gambiae Complex complex mosquitoes in Kenya. Findings Molecularly confirmed An. gambiae s.s. (hereafter An. gambiae) and An. arabiensis collected from 4 different parts of western Kenya were genotyped for kdr from 2011 to 2013. Vgsc-1014F was observed to have emerged, apparently, simultaneously in both An. gambiae and An. arabiensis in 2012. A portion of the samples were submitted for sequencing in order to confirm the Vgsc-1014F genotyping results. The resulting sequence data were deposited in GenBank (Accession numbers: KR867642-KR867651, KT758295-KT758303). A single Vgsc-1014F haplotype was observed suggesting, a common origin in both species. Conclusion This is the first report of Vgsc-1014F in Kenya. Based on our samples, the mutation is present in low frequencies in both An. gambiae and An. arabiensis. It is important that we start monitoring relative frequencies of the two kdr genes so that we can determine their relative importance in an area of high insecticide treated net ownership.
Collapse
Affiliation(s)
- Eric Ochomo
- School of Public Health and Community Development, Maseno University, Maseno, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | | | - Brigid Kemei
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nabie M Bayoh
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Luna Kamau
- Centre for Biotechnology and Research Development, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Francis Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - John M Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Collins Ouma
- School of Public Health and Community Development, Maseno University, Maseno, Kenya. .,Health Challenges and Systems, African Population and Health Research Centre, Nairobi, Kenya.
| | - John Gimnig
- Centers of Disease Control and Prevention, Atlanta, USA.
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. .,Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Charles Mbogo
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya. .,Malaria Public Health Department, KEMRI-Wellcome Trust Research Program, Nairobi, Kenya.
| |
Collapse
|
41
|
Wanjala CL, Zhou G, Mbugi J, Simbauni J, Afrane YA, Ototo E, Gesuge M, Atieli H, Githeko AK, Yan G. Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya. Parasit Vectors 2015; 8:588. [PMID: 26567915 PMCID: PMC4644290 DOI: 10.1186/s13071-015-1194-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/31/2015] [Indexed: 11/13/2022] Open
Abstract
Background Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. Methods WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. Results WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). Conclusion This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
Collapse
Affiliation(s)
- Christine L Wanjala
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya. .,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Jernard Mbugi
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Jemimah Simbauni
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Yaw A Afrane
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Ednah Ototo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Maxwell Gesuge
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Harrysone Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
42
|
Gore-Langton GR, Mungai J, Alenwi N, Abagira A, Bicknell OM, Harrison RE, Hassan FA, Munga S, Eves K, Juma E, Allan R. Investigating a Non-Mesh Mosquito Net Among Outdoor Sleeping Nomadic Communities in Kenya. Am J Trop Med Hyg 2015; 93:1002-1009. [PMID: 26416107 PMCID: PMC4703291 DOI: 10.4269/ajtmh.14-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 06/15/2015] [Indexed: 11/17/2022] Open
Abstract
Rising reports of exophagic malaria vectors make even more pressing the need for alternatives to traditional, mesh, long-lasting insecticidal nets (LLINs) designed for indoor sleeping and often inadequate in the protection of outdoor-sleeping populations. This study tests and evaluates the retention, utilization, and durability of novel, non-mesh nets designed for outdoor use. Longitudinal, cross-sectional surveys were conducted, the physical condition of nets was assessed, and bio-efficacy and insecticide content were tested. At 22 months, retention was 98.0%; 97.1% of nets fell within the World Health Organization (WHO) category of being in “good” condition; none were in the “torn” category. At 18 months post-distribution, 100% of nets had at least WHO Pesticide Evaluation Scheme (WHOPES)-acceptable levels of insecticide, this proportion was 66.7% at 22 months. This novel mosquito net has the potential to provide a durable and context-specific tool to prevent malaria among traditionally hard-to-protect and highly vulnerable populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Richard Allan
- *Address correspondence to Richard Allan, The MENTOR Initiative, The Pinnacle Central Court Station Way, Crawley RH 10I JH, United Kingdom. E-mail:
| |
Collapse
|
43
|
Obala AA, Mangeni JN, Platt A, Aswa D, Abel L, Namae J, Prudhomme O'Meara W. What Is Threatening the Effectiveness of Insecticide-Treated Bednets? A Case-Control Study of Environmental, Behavioral, and Physical Factors Associated with Prevention Failure. PLoS One 2015; 10:e0132778. [PMID: 26171962 PMCID: PMC4501815 DOI: 10.1371/journal.pone.0132778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Insecticide-treated nets are the cornerstone of global malaria control and have been shown to reduce malaria morbidity by 50–60%. However, some areas are experiencing a resurgence in malaria following successful control. We describe an efficacy decay framework to understand why high malaria burden persists even under high ITN coverage in a community in western Kenya. Methods We enrolled 442 children hospitalized with malaria and paired them with age, time, village and gender-matched controls. We completed comprehensive household and neighborhood assessments including entomological surveillance. The indicators are grouped into five domains in an efficacy decay framework: ITN ownership, compliance, physical integrity, vector susceptibility and facilitating factors. After variable selection, case-control data were analyzed using conditional logistic regression models and mosquito data were analyzed using negative binomial regression. Predictive margins were calculated from logistic regression models. Results Measures of ITN coverage and physical integrity were not correlated with hospitalized malaria in our study. However, consistent ITN use (Adjusted Odds Ratio (AOR) = 0.23, 95%CI: 0.12–0.43), presence of nearby larval sites (AOR = 1.137, 95%CI: 1.02–1.27), and specific types of crops (AOR (grains) = 0.446, 95%CI: 0.24–0.82) were significantly correlated with malaria amongst children who owned an ITN. The odds of hospitalization for febrile malaria nearly tripled when one other household member had symptomatic malaria infection (AOR–2.76, 95%CI:1.83–4.18). Overall, perfect household adherence could reduce the probability of hospitalization for malaria to less than 30% (95%CI:0.12–0.46) and adjusting environmental factors such as elimination of larval sites and growing grains nearby could reduce the probability of hospitalization for malaria to less than 20% (95%CI:0.04–0.31). Conclusion Availability of ITNs is not the bottleneck for malaria prevention in this community. Behavior change interventions to improve compliance and environmental management of mosquito breeding habitats may greatly enhance ITN efficacy. A better understanding of the relationship between agriculture and mosquito survival and feeding success is needed.
Collapse
Affiliation(s)
| | | | - Alyssa Platt
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Daniel Aswa
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Jane Namae
- Webuye Health and Demographic Surveillance System, Moi University, Eldoret, Kenya
| | - Wendy Prudhomme O'Meara
- College of Health Sciences, Moi University, Eldoret, Kenya
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kotewong R, Pouyfung P, Duangkaew P, Prasopthum A, Rongnoparut P. Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes. Parasitol Res 2015; 114:2567-79. [PMID: 25869958 DOI: 10.1007/s00436-015-4461-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
The cytochrome P450 monooxygenases play a major role in insecticide detoxification and become a target for development of insecticide synergists. In this study, a collection of rhinacanthins (rhinacanthin-D, -E, -G, -N, -Q, and -H/I) purified from Rhinacanthus nasutus, in addition to previously purified rhinacanthin-B and -C, were isolated. These compounds displayed various degrees of inhibition against benzyloxyresorufin-O-debenzylation mediated by CYP6AA3 and CYP6P7 which were implicated in pyrethroid resistance in Anopheles minimus malaria vector. Inhibition modes and kinetics were determined for each of rhinacanthins. Cell-based inhibition assays by rhinacanthins employing 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazolium bromide (MTT) cytotoxicity test were explored their synergistic effects with cypermethrin toxicity on CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells. Rhinacanthin-B, -D, -E, -G, and -N exhibited mechanism-based inhibition against CYP6AA3, an indication of irreversible inhibition, while rhinacanthin-B, -D, -G, and -N were mechanism-based inhibitors of CYP6P7. There was structure-function relationship of these rhinacanthins in inhibition effects against both enzymes. In vitro enzymatic inhibition assays revealed that there were synergistic interactions among rhinacanthins, except rhinacanthin-B and -Q, in inhibition against both enzymes. These rhinacanthins exerted synergism with cypermethrin toxicity on Sf9 cells expressing each of the two P450 enzymes via P450 inhibition and in addition could interact in synergy to further increase cypermethrin toxicity. The inhibition potentials, synergy among rhinacanthins in inhibition against the P450 detoxification enzymes, and synergism with cypermethrin toxicity of the R. nasutus constituents of reported herein could be beneficial to implement effective resistance management of mosquito vector control.
Collapse
Affiliation(s)
- Rattanawadee Kotewong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyatai, Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
45
|
Binagwaho A, Karema C. A call for international accountability--preserving hope amid false protection. LANCET GLOBAL HEALTH 2015; 3:e188-9. [PMID: 25737078 DOI: 10.1016/s2214-109x(15)70014-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Agnes Binagwaho
- Ministry of Health, Kigali, Rwanda; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA; Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| | - Corine Karema
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| |
Collapse
|