1
|
Wu PX, Cui XJ, Cao MX, Lv LH, Dong HM, Xiao SW, Liu JZ, Hu YH. Evaluation on two types of paramyosin vaccines for the control of Haemaphysalis longicornis infestations in rabbits. Parasit Vectors 2021; 14:309. [PMID: 34099029 PMCID: PMC8185926 DOI: 10.1186/s13071-021-04812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemaphysalis longicornis is an obligate hematophagous ectoparasite that transmits a variety of pathogens causing life-threatening diseases in humans and animals. Paramyosin (Pmy) is not only an invertebrate-specific myofibrillar protein but also an important immunomodulatory protein. Therefore, it is one of the ideal candidate antigens for vaccines. METHODS We conducted two vaccine trials to evaluate the protective efficacy of Pmy recombinant protein (rPmy) and peptide vaccine (KLH-LEE). Each rabbit was immunized with three doses of rPmy or KLH-LEE adjuvanted with Freund's complete/incomplete at 500 μg/dose at 2-week intervals before challenge with 40 female H. longicornis/rabbit. PBS plus adjuvant, Trx or KLH was used as control group. The antibodies of rabbits were detected by ELISA. Then, female ticks were fed on the rabbits until detachment. RESULTS ELISA results showed that both vaccines induced rabbits to produce antibodies. Compared with the Trx group, the engorgement weight, oviposition and hatchability of the rPmy group decreased by 8.87%, 26.83% and 38.86%, respectively. On the other hand, engorgement weight, oviposition and hatchability of female ticks in the KLH-LEE group correspondingly resulted in 27.03%, 53.15% and 38.40% reduction compared with that of the KLH group. Considering the cumulative effect of vaccination on the evaluated parameters, results showed 60.37% efficacy of the rPmy vaccine formulation and 70.86% efficacy in the KLH-LEE group. CONCLUSIONS Pmy and particularly epitope LEE have potential for further development of an effective candidate vaccine to protect the host against tick infection. GRAPHIC ABSTARCT.
Collapse
Affiliation(s)
- Pin-Xing Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Xue-Jiao Cui
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Mi-Xue Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Li-Hong Lv
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Hong-Meng Dong
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Shu-Wen Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
2
|
Zaini A, Good-Jacobson KL, Zaph C. Context-dependent roles of B cells during intestinal helminth infection. PLoS Negl Trop Dis 2021; 15:e0009340. [PMID: 33983946 PMCID: PMC8118336 DOI: 10.1371/journal.pntd.0009340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim L. Good-Jacobson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
3
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Gavarane I, Kirilova E, Rubeniņa I, Mežaraupe L, Osipovs S, Deksne G, Pučkins A, Kokina I, Bulanovs A, Kirjušina M. A Simple and Rapid Staining Technique for Sex Determination of Trichinella Larvae Parasites by Confocal Laser Scanning Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1491-1497. [PMID: 31656214 DOI: 10.1017/s1431927619015046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The roundworms of Trichinella genus are worldwide distributed and their prevalence in nature is high. Trichinella genus parasites are the causative agents of foodborne zoonosis trichinellosis. The main prevention and control of the infection are meat inspection by the magnetic stirrer method for the detection of Trichinella larvae in muscle samples. The treatment can be effective if the parasite is discovered early in the intestinal phase. Once the Trichinella larva has reached the muscle tissue, the parasite remains therein and there is no treatment for this life cycle stage. The Trichinella species is dioecious with separate male and female individuals. The developed staining technique that uses confocal laser scanning microscopy (CLSM) displays sufficient results for Trichinella larvae examination and this protocol is applicable to study the internal and external structures and for the sex determination of T. britovi and T. spiralis larvae samples. In the present study, a luminescent derivative was synthesized and used for staining of T. spiralis and T. britovi larvae samples for the examination by CLSM. Various fixatives, such as AFA, 70% ethanol, and Bouin's and Carnoy's solutions were tested for sample preparation. The synthesized luminescent compound demonstrates best visualization results for samples fixed in Bouin's fixative.
Collapse
Affiliation(s)
- Inese Gavarane
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Elena Kirilova
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Ilze Rubeniņa
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Ligita Mežaraupe
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Sergejs Osipovs
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Gunita Deksne
- Institute of Food Safety, Animal Health and Environment BIOR, Riga LV-1076, Latvia
- Faculty of Biology, University of Latvia, Riga LV-1004, Latvia
| | - Aleksandrs Pučkins
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Inese Kokina
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Andrejs Bulanovs
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| | - Muza Kirjušina
- Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia
| |
Collapse
|
5
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang J, Jiang Y, Yang W, Shi C, Huang H, Sun H, Liu G, Wang C, Yang G, Cai Y. Vaccination with DNA encoding ES 43-kDa /45-kDa antigens significantly reduces Trichinella spiralis infection in mice. Res Vet Sci 2018; 120:4-10. [DOI: 10.1016/j.rvsc.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
|
7
|
Guo K, Sun X, Gu Y, Wang Z, Huang J, Zhu X. Trichinella spiralis paramyosin activates mouse bone marrow-derived dendritic cells and induces regulatory T cells. Parasit Vectors 2016; 9:569. [PMID: 27809931 PMCID: PMC5095993 DOI: 10.1186/s13071-016-1857-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic cells (DCs) are antigen-presenting cells that regulate T cell responses for many infectious diseases. The tissue-dwelling nematode Trichinella spiralis expresses paramyosin (TsPmy) not only as a structural protein but also as an immunomodulator to alleviate complement attack by binding to some host complement components. Whether TsPmy is involved in other immunomodulatory pathway and how TsPmy interacts with host DCs is still unknown. Methods Mouse bone marrow-derived DCs were incubated with recombinant TsPmy (rTsPmy) for activation. Maturation of DC was determined by the expression of surface markers CD40, CD80, CD86 and MHCII. The rTsPmy-pulsed DCs were co-incubated with T. spiralis-sensitized or naïve mouse CD4+ T cells to observe their activation on T cells and polarizing regulatory T cells using flow cytometry. Cytokines were measured by enzyme-linked immunosorbent assays (ELISA). Results TsPmy was able to activate mouse bone marrow-derived DCs to semi-mature status characterized by expressing surface CD40 and CD86, but not CD80 and MHCII. The semi-mature TsPmy-pulsed DCs were able to stimulate T. spiralis-sensitized CD4+ T cells to proliferate. Incubation of TsPmy-pulsed DCs with naïve CD4+ splenocytes polarized the latter to CD4+CD25+Foxp3+ regulatory T cells. However, mice immunized with rTsPmy only induce the CD4+CD25−Foxp3+ T cell population, associated with high level of IL-10, TGF-β and IL-17A. Conclusions During T. spiralis infection, TsPmy plays an important role in modulating the host immune system by stimulating DCs to differentiate the CD4+ T cells to regulatory T cells, in addition to binding to components of the host complement cascade, as survival strategies to live in host.
Collapse
Affiliation(s)
- Kai Guo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Wang L, Wang X, Bi K, Sun X, Yang J, Gu Y, Huang J, Zhan B, Zhu X. Oral Vaccination with Attenuated Salmonella typhimurium-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against Trichinella spiralis in BALB/c Mice. PLoS Negl Trop Dis 2016; 10:e0004952. [PMID: 27589591 PMCID: PMC5010209 DOI: 10.1371/journal.pntd.0004952] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/03/2016] [Indexed: 02/01/2023] Open
Abstract
Background Our previous studies showed that Trichinella spiralis paramyosin (TsPmy) is an immunomodulatory protein that inhibits complement C1q and C8/C9 to evade host complement attack. Vaccination with recombinant TsPmy protein induced protective immunity against T. spiralis larval challenge. Due to the difficulty in producing TsPmy as a soluble recombinant protein, we prepared a DNA vaccine as an alternative approach in order to elicit a robust immunity against Trichinella infection. Methods and Findings The full-length TsPmy coding DNA was cloned into the eukaryotic expression plasmid pVAX1, and the recombinant pVAX1/TsPmy was transformed into attenuated Salmonella typhimurium strain SL7207. Oral vaccination of mice with this attenuated Salmonella-delivered TsPmy DNA vaccine elicited a significant mucosal sIgA response in the intestine and a systemic IgG antibody response with IgG2a as the predominant subclass. Cytokine analysis also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 5, 6, 10) responses in lymphocytes from the spleen and MLNs of immunized mice upon stimulation with TsPmy protein. The expression of the homing receptors CCR9/CCR10 on antibody secreting B cells may be related to the translocation of IgA-secreted B cells to local intestinal mucosa. The mice immunized with Salmonella-delivered TsPmy DNA vaccine produced a significant 44.8% reduction in adult worm and a 46.6% reduction in muscle larvae after challenge with T. spiralis larvae. Conclusion Our results demonstrated that oral vaccination with TsPmy DNA delivered by live attenuated S. typhimurium elicited a significant local IgA response and a mixed Th1/Th2 immune response that elicited a significant protection against T. spiralis infection in mice. Trichinellosis is one of the most important food-borne parasitic zoonoses, and a serious public health issue worldwide. Developing a vaccine is an alternative approach to control the disease. TsPmy is a paramyosin expressed by Trichinella spiralis to bind and neutralize human complement and a vaccine antigen. We made a DNA vaccine of TsPmy orally delivered by attenuated Salmonella typhimurium that elicited a robust Th1/Th2 and mucosa IgA responses, and protected mice against T. spiralis infection with significant worm reduction against larval challenge. The attenuated Salmonella-delivered TsPmy DNA vaccine provides a feasible and promising approach for controlling trichinellosis in human and domestic animals.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xiaohuan Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Kuo Bi
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Jing Yang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
- * E-mail:
| |
Collapse
|
9
|
Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation. PLoS Negl Trop Dis 2015; 9:e0004310. [PMID: 26720603 PMCID: PMC4697845 DOI: 10.1371/journal.pntd.0004310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. METHODS AND FINDINGS The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. CONCLUSION Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.
Collapse
|
10
|
Liu P, Cui J, Liu RD, Wang M, Jiang P, Liu LN, Long SR, Li LG, Zhang SB, Zhang XZ, Wang ZQ. Protective immunity against Trichinella spiralis infection induced by TsNd vaccine in mice. Parasit Vectors 2015; 8:185. [PMID: 25889976 PMCID: PMC4382852 DOI: 10.1186/s13071-015-0791-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background We have previously reported that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and vaccination of mice with recombinant TsNd protein (rTsNd) produced a partial protective immunity. The aim of this study was to investigate the immune protection induced by TsNd DNA vaccine. Methods The full-length cDNA sequence of TsNd gene was cloned into pcDNA3.1 and used to immunize BALB/c mice by intramuscular injection. Transcription and expression of TsNd were detected by RT-PCR and IFT. The levels of specific IgA, IgG, IgG1 and IgG2a, and cytokines were assayed by ELISA at weeks 0, 6 and 8 post-immunization. The immune protection of TsNd DNA vaccine against challenge infection was investigated. Results Immunization of mice with TsNd DNA elicited a systemic Th1/Th2 immune response and a local mucosal IgA response. The in vitro transcription and expression of TsNd gene was observed at all developmental stages of T. spiralis (ML, IIL, AW and NBL). Anti-rTsNd IgG levels were increased after immunization and levels of IgG1 were obviously higher than that of IgG2a. Intestinal specific IgA levels of immunized mice were significantly higher than those of vector and PBS control mice. Cytokine profiling also showed a significant increase in Th1 (IFN-γ, IL-2) and Th2 (IL-4, 10) responses in splenocytes of immunized mice on stimulation with rTsNd. Vaccination of mice with pcDNA3.1-TsNd displayed a 40.44% reduction in adult worms and a 53.9% reduction in larval burden. Conclusions TsNd DNA induced a mixed Th1/Th2 immune response and partial protection against T. spiralis infection in mice.
Collapse
Affiliation(s)
- Pei Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Min Wang
- Department of Infection Control, The Second People's Hospital of Zhengzhou City, Zhengzhou, 450000, P. R. China.
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Li Na Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Ling Ge Li
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Shuai Bing Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
11
|
Yang W, Li LG, Liu RD, Sun GG, Liu CY, Zhang SB, Jiang P, Zhang X, Ren HJ, Wang ZQ, Cui J. Molecular identification and characterization of Trichinella spiralis proteasome subunit beta type-7. Parasit Vectors 2015; 8:18. [PMID: 25582125 PMCID: PMC4297437 DOI: 10.1186/s13071-014-0626-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/21/2014] [Indexed: 01/13/2023] Open
Abstract
Background Previous study showed that Trichinella spiralis proteasome subunit beta type-7 (Tspst) gene is an up-regulated gene in intestinal infective larvae (IIL) compared to muscle larvae (ML), which was screened by using suppression subtractive hybridization (SSH) and confirmed by real-time PCR. Tspst may be related to the larval invasion of intestinal epithelial cells (IECs). The aim of this study was to identify Tspst and to investigate its immune protection against intestinal T. spiralis infection. Methods The Tspst gene encoding a 29 kDa protein from T. spiralis infective larvae was cloned, and recombinant Tspst protein (rTspst) was produced in an Escherichia coli expression system. The rTspst was used to immunize BALB/c mice. Anti-rTspst antibodies were used to determine the immunolocolization of Tspst in the parasite. Transcription and expression of Tspst at T. spiralis different developmental stages were observed by RT-PCR and immunofluorescence test (IFT). The in vitro or in vivo immune protection of anti-rTspst serum or rTspst against intestinal T. spiralis infection in BALB/c mice was evaluated. Results Anti-rTspst serum recognized the native Tspst protein with 29 kDa in ML crude antigens. Transcription and expression of gene was observed at all T. spiralis different developmental stages (IIL, adult worms, newborn larvae, and ML). An immunolocalization analysis identified Tspst in the cuticle and internal organs of the parasite. An in vitro invasion assay showed that, when anti-rTspst serum, serum of mice infected with T. spiralis or normal mouse serum were added to the medium, the invasion rate of the infective larvae in an IEC monolayer was 25.2%, 11.4%, and 79%, respectively (P < 0.05), indicating that anti-rTspst serum partially prevented the larval invasion of IECs. After a challenge infection with T. spiralis muscle larvae, mice immunized with rTspst conferred a 45.7% reduction in adult worm burden in intestines. Conclusions In the present study, Tspst was first identified and characterized. Tspst is an invasion-related protein of T. spiralis IIL and could be considered as a potential vaccine candidate antigen against intestinal T. spiralis infection that merits further study.
Collapse
Affiliation(s)
- Wei Yang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Ling Ge Li
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Ge Ge Sun
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Chun Ying Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Shuai Bing Zhang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Peng Jiang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Xi Zhang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Hui Jun Ren
- Department of Laboratorial Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Jing Cui
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
12
|
Long SR, Wang ZQ, Liu RD, Liu LN, Li LG, Jiang P, Zhang X, Zhang ZF, Shi HN, Cui J. Molecular identification of Trichinella spiralis nudix hydrolase and its induced protective immunity against trichinellosis in BALB/c mice. Parasit Vectors 2014; 7:600. [PMID: 25522912 PMCID: PMC4287505 DOI: 10.1186/s13071-014-0600-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nudix hydrolases (Nd) is a widespread superfamily, which is found in all classes of organism, hydrolyse a wide range of organic pyrophosphates and has a 'housecleaning' function. The previous study showed that Trichinella spiralis Nd (TsNd) bound to intestinal epithelial cells (IECs), and the vaccination of mice with T7 phage-displayed TsNd polypeptides produced protective immunity. The aim of this study was to clone, express and identify the full-length TsNd and to investigate its immune protection against T. spiralis infection. METHODS The full-length cDNA sequence of TsNd gene encoding a 46 kDa protein from T. spiralis intestinal infective larvae (IIL) was cloned and identified. The antigenicity of rTsNd was analyzed by Western blot. Transcription and expression of TsNd at T. spiralis different stages were observed by RT-PCR and IFT. The levels of the specific total IgG, IgG1 and IgG2a antibodies to rTsNd were determined by ELISA. The immune protection of rTsNd against T. spiralis infection was investigated. RESULTS Sequence and phylogenetic analysis revealed that TsNd had a nudix motif located at 226-244aa, which had high homology and the closest evolutionary status with T. pseudospiralis. The rTsNd was obtained after expression and purification. Western blot analysis showed that anti-rTsNd serum recognized the native TsNd protein in crude antigens of muscle larvae (ML), IIL, adult worms (AW) and newborn larvae (NBL), and ES antigens of ML. Transcription and expression of TsNd gene was observed in all developmental stages of T. spiralis (ML, IIL, AW and NBL), with high level expression in IIL. An immunolocalization analysis identified TsNd in the cuticle, stichocytes and reproductive organs of the parasite. Following immunization, anti-rTsNd IgG levels were increased, and the levels of IgG1 were more significantly higher than that of IgG2a. After a challenge infection with T. spiralis, mice immunized with the rTsNd displayed a 57.7% reduction in adult worms and a 56.9% reduction in muscle larval burden. CONCLUSIONS TsNd induced a partial protective immunity in mice and could be considered as a novel candidate vaccine antigen against trichinellosis.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Li Na Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Ling Ge Li
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Peng Jiang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Xi Zhang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Zi Fang Zhang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Hai Ning Shi
- Department of Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Jing Cui
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|