1
|
Ishikawa K, Miyata D, Hattori S, Tani H, Kuriyama T, Wei FY, Miyakawa T, Nakada K. Accumulation of mitochondrial DNA with a point mutation in tRNA Leu(UUR) gene induces brain dysfunction in mice. Pharmacol Res 2024; 208:107374. [PMID: 39197713 DOI: 10.1016/j.phrs.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Brain functions are mediated via the complex interplay between several complex factors, and hence, identifying the underlying cause of an abnormality within a certain brain region can be challenging. In mitochondrial disease, abnormalities in brain function are thought to be attributed to accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations; however, only few previous studies have directly demonstrated that accumulation of mutant mtDNA induced abnormalities in brain function. Herein, we examined the effects of mtDNA mutations on brain function via behavioral analyses using a mouse model with an A2748G point mutation in mtDNA tRNALeu(UUR). Our results revealed that mice with a high percentage of mutant mtDNA showed a characteristic trend toward reduced prepulse inhibition and memory-dependent test performance, similar to that observed in psychiatric disorders, such as schizophrenia; however, muscle strength and motor coordination were not markedly affected. Upon examining the hippocampus and frontal lobes of the brain, mitochondrial morphology was abnormal, and the brain weight was slightly reduced. These results indicate that the predominant accumulation of a point mutation in the tRNALeu(UUR) gene may affect brain functions, particularly the coordination of sensory and motor functions and memory processes. These abnormalities probably caused by both direct effects of accumulation of the mutant mtDNA in neuronal cells and indirect effects via changes of systemic extracellular environments. Overall, these findings will lead to a better understanding of the pathogenic mechanism underlying this complex disease and facilitate the development of optimal treatment methods.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| | - Daiki Miyata
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan; Research Creation Support Center, Aichi Medical University, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Takayoshi Kuriyama
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
2
|
Dagar S, Subramaniam S. Tunneling Nanotube: An Enticing Cell-Cell Communication in the Nervous System. BIOLOGY 2023; 12:1288. [PMID: 37886998 PMCID: PMC10604474 DOI: 10.3390/biology12101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The field of neuroscience is rapidly progressing, continuously uncovering new insights and discoveries. Among the areas that have shown immense potential in research, tunneling nanotubes (TNTs) have emerged as a promising subject of study. These minute structures act as conduits for the transfer of cellular materials between cells, representing a mechanism of communication that holds great significance. In particular, the interplay facilitated by TNTs among various cell types within the brain, including neurons, astrocytes, oligodendrocytes, glial cells, and microglia, can be essential for the normal development and optimal functioning of this complex organ. The involvement of TNTs in neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, has attracted significant attention. These disorders are characterized by the progressive degeneration of neurons and the subsequent decline in brain function. Studies have predicted that TNTs likely play critical roles in the propagation and spread of pathological factors, contributing to the advancement of these diseases. Thus, there is a growing interest in understanding the precise functions and mechanisms of TNTs within the nervous system. This review article, based on our recent work on Rhes-mediated TNTs, aims to explore the functions of TNTs within the brain and investigate their implications for neurodegenerative diseases. Using the knowledge gained from studying TNTs could offer novel opportunities for designing targeted treatments that can stop the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Norman Fixel Institute for Neurological Diseases, 130 Scripps Way, C323, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Wang X, Lu H, Li M, Zhang Z, Wei Z, Zhou P, Cao Y, Ji D, Zou W. Research development and the prospect of animal models of mitochondrial DNA-related mitochondrial diseases. Anal Biochem 2023; 669:115122. [PMID: 36948236 DOI: 10.1016/j.ab.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Prokopidis K, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:416-427. [PMID: 35984306 PMCID: PMC9999677 DOI: 10.1093/nutrit/nuac064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT From an energy perspective, the brain is very metabolically demanding. It is well documented that creatine plays a key role in brain bioenergetics. There is some evidence that creatine supplementation can augment brain creatine stores, which could increase memory. OBJECTIVE A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to determine the effects of creatine supplementation on memory performance in healthy humans. DATA SOURCES The literature was searched through the PubMed, Web of Science, Cochrane Library, and Scopus databases from inception until September 2021. DATA EXTRACTION Twenty-three eligible RCTs were initially identified. Ten RCTs examining the effect of creatine supplementation compared with placebo on measures of memory in healthy individuals met the inclusion criteria for systematic review, 8 of which were included in the meta-analysis. DATA ANALYSIS Overall, creatine supplementation improved measures of memory compared with placebo (standard mean difference [SMD] = 0.29, 95%CI, 0.04-0.53; I2 = 66%; P = 0.02). Subgroup analyses revealed a significant improvement in memory in older adults (66-76 years) (SMD = 0.88; 95%CI, 0.22-1.55; I2 = 83%; P = 0.009) compared with their younger counterparts (11-31 years) (SMD = 0.03; 95%CI, -0.14 to 0.20; I2 = 0%; P = 0.72). Creatine dose (≈ 2.2-20 g/d), duration of intervention (5 days to 24 weeks), sex, or geographical origin did not influence the findings. CONCLUSION Creatine supplementation enhanced measures of memory performance in healthy individuals, especially in older adults (66-76 years). SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42021281027.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- is with the Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
| | - Panagiotis Giannos
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Konstantinos K Triantafyllidis
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Nutrition & Dietetics, Musgrove Park Hospital, Taunton & Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Konstantinos S Kechagias
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- is with the Department of Obstetrics & Gynaecology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Scott C Forbes
- is with the Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Darren G Candow
- is with the Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
5
|
Zorzo C, Arias JL, Méndez M. Functional neuroanatomy of allocentric remote spatial memory in rodents. Neurosci Biobehav Rev 2022; 136:104609. [PMID: 35278596 DOI: 10.1016/j.neubiorev.2022.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022]
Abstract
Successful spatial cognition involves learning, consolidation, storage, and later retrieval of a spatial memory trace. The functional contributions of specific brain areas and their interactions during retrieval of past spatial events are unclear. This systematic review collects studies about allocentric remote spatial retrieval assessed at least two weeks post-acquisition in rodents. Results including non-invasive interventions, brain lesion and inactivation experiments, pharmacological treatments, chemical agent administration, and genetic manipulations revealed that there is a normal forgetting when time-periods are close to or exceed one month. Moreover, changes in the morphology and functionality of neocortical areas, hippocampus, and other subcortical structures, such as the thalamus, have been extensively observed as a result of spatial memory retrieval. In conclusion, apart from an increasingly neocortical recruitment in remote spatial retrieval, the hippocampus seems to participate in the retrieval of fine spatial details. These results help to better understand the timing of memory maintenance and normal forgetting, outlining the underlying brain areas implicated.
Collapse
Affiliation(s)
- Candela Zorzo
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| | - Marta Méndez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| |
Collapse
|
6
|
Yang H, Zhang Y, Wu X, Gan P, Luo X, Zhong S, Zuo W. Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety‐Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics 2022; 43:106-118. [PMID: 35066900 DOI: 10.1002/bem.22388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/26/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Honghong Yang
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Yuanyuan Zhang
- Department of Otolaryngology‐Head and Neck Surgery Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xianwen Wu
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Ping Gan
- Department of Dependable Service Computing in Cyber Physical Society, Key Laboratory of the Ministry of Education Chongqing University Chongqing China
| | - Xiaoli Luo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Shixun Zhong
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wenqi Zuo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
7
|
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094850. [PMID: 34063708 PMCID: PMC8125007 DOI: 10.3390/ijms22094850] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sehwan Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
8
|
The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion 2020; 57:63-75. [PMID: 33378713 DOI: 10.1016/j.mito.2020.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Hyperammonemia is very toxic to the brain, leading to inflammation, disruption of brain cellular energy metabolism and cognitive function. However, the underlying mechanism(s) for these impairments is still not fully understood. This study investigated the effects of ammonia in hippocampal astroglia derived from C57BL/6 mice. Parameters measured included oxygen consumption rates (OCR), ATP, cytochrome c oxidase (COX) activity, alterations in oxidative phosphorylation (OXPHOS), nuclear factor kappa B (NF-κB) subunits, key regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), calcium/calmodulin-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), early growth response (Egr) factor family of proteins, and mitochondrial transcription factor A (TFAM). Ammonia was found to decrease mitochondrial numbers, potentially through a CaMKII-CREB-PGC1α-Nrf2 pathway in astroglia. Ammonia did not alter the levels of Egrs and TFAM in astroglia. Ammonia decreased OCR, ATP, COX, and OXPHOS levels in astroglia. To assess whether energy metabolism is reduced by ammonia through NF-κB associated pathways, astroglia were treated with ammonia alone or with NF-κB inhibitors such as Bay11-7082 or SN50. Mitochondrial OCR levels were reduced in the presence of NF-κB inhibitors; however co-treatment of NF-κB inhibitors and ammonia reversed mitochondrial deficits. Further, ammonia increased translocation of the NF-κB p65 into the nucleus of astroglia that correlates with an increased activity of NF-κB. These findings suggest that the NF-κB signaling pathway is putatively involved in ammonia-induced changes in bioenergetics in astroglia. Such research has critical implications for the treatment of disorders in which brain bioenergetics is compromised.
Collapse
|
9
|
Espino De la Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci 2020; 32:203-217. [PMID: 33550783 DOI: 10.1515/revneuro-2020-0068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer's and Parkinson's disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
Collapse
Affiliation(s)
- César Espino De la Fuente-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| |
Collapse
|
10
|
Behzadfar L, Hassani S, Feizpour H, Abbasian N, Salek Maghsoudi A, Taghizadeh G, Pourahmad J, Sharifzadeh M. Effects of mercuric chloride on spatial memory deficit-induced by beta-amyloid and evaluation of mitochondrial function markers in the hippocampus of rats. Metallomics 2020; 12:144-153. [PMID: 31793599 DOI: 10.1039/c9mt00161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury is a highly poisonous heavy metal abundantly found in the environment in its inorganic form. Although evidence have been provided about the possible role of inorganic mercury in the pathology of Alzheimer's disease (AD), its effect on cognitive and mitochondrial functions have not yet been completely understood. Thus, the purpose of the present study was to examine the effects of the chronic exposure to mercuric chloride (0.4, 0.8 and 1.6 mg kg-1 per day for 3 weeks) through drinking water (by gavage) on spatial learning and memory and hippocampal mitochondrial function in beta-amyloid treated rats (1 μg per μL per side, intrahippocampally). The acquisition and retention of spatial memory were evaluated by the Morris water maze (MWM) test. Several parameters of hippocampal mitochondrial function were also measured. The results indicated that mercury impaired spatial learning and memory as well as aggravated Aβ-induced memory impairments in a concentration-dependent manner. Furthermore, mercury exposure resulted in a significant increase in ROS generation, MMP collapse, mitochondrial swelling, glutathione oxidation, lipid peroxidation, and outer membrane damage. In addition, a reduced cytochrome c oxidase (complex IV) activity and elevated ADP/ATP ratio in the rats' hippocampus was also observed. The findings of the current study revealed that chronic mercury exposure led to mitochondrial dysfunction, which resulted in spatial memory impairments. The results also showed that mercury can exacerbate the toxic effects of Aβ on spatial memory and hippocampal mitochondrial function.
Collapse
Affiliation(s)
- Ladan Behzadfar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gupta SK, Mesharam MK, Krishnamurthy S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 2018; 43:263-276. [PMID: 29872015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electromagnetic radiation (EMR) can induce or modulate several neurobehavioral disorders. Duration and frequency of exposure of EMR is critical to develop cognitive disorders. Even though EMR-2450 is widely used, its effects on cognition in relation to mitochondrial function and apoptosis would provide better understanding of its pathophysiological effects. Therefore, a comparative study of different frequencies of EMR exposure would give valuable information on effects of discrete frequencies of EMR on cognition. Male rats were exposed to EMR (900, 1800 and 2450 MHz) every day for 1 h for 28 consecutive days. The cognitive behavior in terms of novel arm entries in Y-maze paradigm was evaluated every week after 1 h to last EMR exposure. Animals exposed to EMR-2450 MHz exhibited significant cognitive deficits. EMR- 2450 MHz caused loss of mitochondrial function and integrity, an increase in amyloid beta expression. There was release of cytochrome-c and activation of apoptotic factors such as caspase-9 and -3 in the hippocampus. Further, there was decrease in levels of acetylcholine, and increase in activity of acetyl cholinesterase, indicating impairment of cholinergic system. Therefore, exposure of EMR-2450 in rats caused cognitive deficit with related pathophysiological changes in mitochondrial and cholinergic function, and amyloidogenesis.
Collapse
Affiliation(s)
- Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
12
|
Behzadfar L, Abdollahi M, Sabzevari O, Hosseini R, Salimi A, Naserzadeh P, Sharifzadeh M, Pourahmad J. Potentiating role of copper on spatial memory deficit induced by beta amyloid and evaluation of mitochondrial function markers in the hippocampus of rats. Metallomics 2018. [PMID: 28644490 DOI: 10.1039/c7mt00075h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mounting evidence suggests that copper, a crucial element in normal brain function, plays an important role in the etiology of Alzheimer's disease, which is known as a neurodegenerative mitochondrial disorder. However, the precise mechanisms of its effects on cognitive and mitochondrial functions through the CNS have not been thoroughly recognized yet. In this study, we aimed to investigate the long-term (3-week) effects of copper sulfate (50, 100 and 200 mg kg-1 day-1) exposure on learning and memory as well as on mitochondrial function in the hippocampus of rats in the presence and absence of beta amyloid (1 μg μl-1 per side) intrahippocampally (IH). After three weeks of copper exposure through drinking water, acquisition and retention of spatial memory were measured by the Morris water maze (MWM) test. Various parameters of mitochondrial function were also evaluated. Our data show that copper damaged the spatial learning and memory and also exacerbated the memory deficit induced by Aβ injection in rats in a dose-dependent manner. Mitochondria isolated from the hippocampus of rats treated with copper showed significant increases in ROS formation, mitochondrial swelling, lipid peroxidation, glutathione oxidation, outer membrane damage, and collapse of MMP, decreased cytochrome c oxidase activity, and finally increased ADP/ATP ratios. Our results indicate that copper overloading in the hippocampus of rats causes mitochondrial dysfunction and subsequent oxidative stress leading to cognitive impairment. This study also reveals that copper can potentiate Aβ deleterious effects on spatial memory and brain mitochondrial function.
Collapse
Affiliation(s)
- Ladan Behzadfar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
14
|
Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, Bernstein MJ, Suh M, Fernyhough P, Albensi BC. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. ACTA ACUST UNITED AC 2018; 25:54-66. [PMID: 29339557 PMCID: PMC5772392 DOI: 10.1101/lm.046284.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, Pennsylvania 19001, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| |
Collapse
|
15
|
Tapia-Rojas C, Carvajal FJ, Mira RG, Arce C, Lerma-Cabrera JM, Orellana JA, Cerpa W, Quintanilla RA. Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment. Mol Neurobiol 2017; 55:4473-4491. [PMID: 28674997 DOI: 10.1007/s12035-017-0613-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
In the young population, binge drinking is a pattern of problematic alcohol consumption, characterized by a short period of heavy drinking followed by abstinence which is frequently repeated over time. This drinking pattern is associated with mental problems, use of other drugs, and an increased risk of excessive alcohol intake during adulthood. However, little is known about the effects of binge drinking on brain function in adolescents and its neurobiological impact during the adulthood. In the present study, we evaluated the effects of alcohol on hippocampal memory, synaptic plasticity, and mitochondrial function in adolescent rats after a binge drinking episode in vivo. These effects were analyzed at 1, 3, or 7 weeks post alcohol exposure. Our results showed that binge-like ethanol pre-treated (BEP) rats exhibited early alterations in learning and memory tests accompanied by an impairment of synaptic plasticity that was total and partially compensated, respectively. These changes could be attributed to a rapid increase in oxidative damage and a late inflammatory response induced by post ethanol exposure. Additionally, BEP alters the regulation of mitochondrial dynamics and modifies the expression of mitochondrial permeability transition pore (mPTP) components, such as cyclophilin D (Cyp-D) and the voltage-dependent anion channel (VDAC). These mitochondrial structural changes result in the impairment of mitochondrial bioenergetics, decreasing ATP production progressively until adulthood. These results strongly suggest that teenage alcohol binge drinking impairs the function of the adult hippocampus including memory and synaptic plasticity as a consequence of the mitochondrial damage induced by alcohol and that the recovery of hippocampal function could implicate the activation of alternative pathways that fail to reestablish mitochondrial function.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratory of Neurodegenerative Diseases, CIB, Universidad Autónoma de Chile, El llano Subercaseaux 2801, 5to Piso, San Miguel, 8910000, Santiago, Chile
| | - Francisco J Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Camila Arce
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | | | - Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Santiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
- Laboratory of Neurodegenerative Diseases, CIB, Universidad Autónoma de Chile, El llano Subercaseaux 2801, 5to Piso, San Miguel, 8910000, Santiago, Chile.
| |
Collapse
|
16
|
Taghizadeh G, Pourahmad J, Mehdizadeh H, Foroumadi A, Torkaman-Boutorabi A, Hassani S, Naserzadeh P, Shariatmadari R, Gholami M, Rouini MR, Sharifzadeh M. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment. Free Radic Biol Med 2016; 99:11-19. [PMID: 27451936 DOI: 10.1016/j.freeradbiomed.2016.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function.
Collapse
Affiliation(s)
- Ghorban Taghizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Shariatmadari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Das NR, Sharma SS. Cognitive Impairment Associated with Parkinson's Disease: Role of Mitochondria. Curr Neuropharmacol 2016; 14:584-92. [PMID: 26725887 PMCID: PMC4981741 DOI: 10.2174/1570159x14666160104142349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/27/2015] [Accepted: 01/01/2016] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder and is associated with some of the intellectual disabilities like cognitive dysfunctions. PD associated cognitive dysfunctions have been proved well in both preclinical and clinical set ups. Like other neurodegenerative diseases, insults to mitochondria have a significant role in the pathobiology of PD associated dementia (PDD). Neurotoxins like MPTP, mutations of the mitochondrial genes, oxidative stress, imbalanced redox mechanisms and dysregulated mitochondrial dynamics have been implicated in mitochondrial dysfunctions and have paramount importance in the pathobiology of PDD. However, the extent of contribution of mitochondrial dysfunctions towards cognitive deficits in PD has not been characterized completely. In this review we highlight on the contribution of mitochondrial dysfunction to PDD. We also highlight different behavioural tests used in nonhuman primate and rodent models for assessing cognitive deficits and some common techniques for evaluation of mitochondrial dysfunction in PDD.
Collapse
Affiliation(s)
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar, Punjab-160062, India.
| |
Collapse
|
18
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
19
|
Reduced adolescent-age spatial learning ability associated with elevated juvenile-age superoxide levels in complex I mouse mutants. PLoS One 2015; 10:e0123863. [PMID: 25853418 PMCID: PMC4390344 DOI: 10.1371/journal.pone.0123863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Large-scale, heteroplasmic and generally pathogenic mtDNA defects (as induced by defective mitochondrial DNA polymerase, clonal mutations or DNA deletions) are known to negatively impact on life span and can result in apoptosis and tissue loss in, e.g., skeletal muscle or reduce learning abilities. The functional impact of homoplasmic specific mtDNA point mutations, e.g., in genes coding for the electron transport chain, however, remains a matter of debate. The present study contributes to this discussion and provides evidence that a single point mutation in complex I of the respiratory chain is associated with impairment of spatial navigation in adolescent (6-month-old) mice, i.e., reduced performance in the Morris Water Maze, which goes along with increased production of reactive oxygen species (ROS) in juvenile mice (3 months) but not at the age of phenotype expression. A point mutation in complex III goes along with only a mild and non-significant negative effect on cognitive performance and no significant changes in ROS production. These findings suggest to also consider the ontogenetic development of phenotypes when studying mtDNA mutations and highlights a possible impact of complex I dysfunction on the emergence of neurological deficits.
Collapse
|
20
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
21
|
Mitochondrial DNA with a large-scale deletion causes two distinct mitochondrial disease phenotypes in mice. G3-GENES GENOMES GENETICS 2013; 3:1545-52. [PMID: 23853091 PMCID: PMC3755915 DOI: 10.1534/g3.113.007245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies in patients have suggested that the clinical phenotypes of some mitochondrial diseases might transit from one disease to another (e.g., Pearson syndrome [PS] to Kearns-Sayre syndrome) in single individuals carrying mitochondrial (mt) DNA with a common deletion (∆mtDNA), but there is no direct experimental evidence for this. To determine whether ∆mtDNA has the pathologic potential to induce multiple mitochondrial disease phenotypes, we used trans-mitochondrial mice with a heteroplasmic state of wild-type mtDNA and ∆mtDNA (mito-mice∆). Late-stage embryos carrying ≥50% ∆mtDNA showed abnormal hematopoiesis and iron metabolism in livers that were partly similar to PS (PS-like phenotypes), although they did not express sideroblastic anemia that is a typical symptom of PS. More than half of the neonates with PS-like phenotypes died by 1 month after birth, whereas the rest showed a decrease of ∆mtDNA load in the affected tissues, peripheral blood and liver, and they recovered from PS-like phenotypes. The proportion of ∆mtDNA in various tissues of the surviving mito-mice∆ increased with time, and Kearns-Sayre syndrome−like phenotypes were expressed when the proportion of ∆mtDNA in various tissues reached >70–80%. Our model mouse study clearly showed that a single ∆mtDNA was responsible for at least two distinct disease phenotypes at different ages and suggested that the level and dynamics of ∆mtDNA load in affected tissues would be important for the onset and transition of mitochondrial disease phenotypes in mice.
Collapse
|
22
|
Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG. Neuropathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases. NEURODEGENER DIS 2013; 12:177-88. [PMID: 23406886 DOI: 10.1159/000346267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. OBJECTIVE To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. METHODS To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. RESULTS The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. CONCLUSION We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases.
Collapse
|
23
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
24
|
Nakada K, Hayashi JI. Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp Anim 2012; 60:421-31. [PMID: 22041279 DOI: 10.1538/expanim.60.421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mitochondrial genome (mtDNA) mutations and the resultant mitochondrial respiratory abnormalities are associated with a wide variety of disorders, such as mitochondrial diseases, neurodegenerative diseases, diabetes, and cancer, as well as aging. Generation of model animals carrying mutant mtDNAs is important for understanding the pathophysiological mechanisms of the mtDNA-based diseases. We have succeeded in generating three kinds of mice with pathogenic mutant mtDNAs, named "mito-mice," by the introduction of mitochondria carrying pathogenic mutant mtDNAs into mouse zygotes and mouse embryonic stem (ES) cells. In the case of mito-mice possessing the heteroplasmic state of wild-type mtDNA and pathogenic mtDNA with a large-scale deletion (ΔmtDNA, mito-miceΔ), a high load of ΔmtDNA induced mitochondrial respiration defects in various tissues, resulting in mitochondrial disease phenotypes, such as low body weight, lactic acidosis, ischemia, myopathy, heart block, deafness, male infertility, long-term memory defects, and renal failure. In this review, we summarize generation and clinical phenotypes of three types of mito-mice and we introduce several treatment trials for mitochondrial diseases using mito-miceΔ.
Collapse
Affiliation(s)
- Kazuto Nakada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
25
|
Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB. Mitochondrial Dysfunction during Brain Aging: Role of Oxidative Stress and Modulation by Antioxidant Supplementation. Aging Dis 2011; 2:242-256. [PMID: 22396876 PMCID: PMC3295058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 05/31/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress are two interdependent and reinforcing damage mechanisms that play a central role in brain aging. Oxidative stress initiated and propagated by active oxyradicals and various other free radicals in the presence of catalytic metal ions not only can damage the phospholipid, protein and DNA molecules within the cell but can also modulate cell signalling pathways and gene expression pattern and all these processes may be of critical importance in the aging of brain. The present article describes the mechanism of formation of reactive oxyradicals within mitochondria and then explains how these can initiate mitochondrial biogenesis program and activate various transcriptional factors in the cytosol to boost up the antioxidative capacity of the mitochondria and the cell. However, a high level of oxidative stress finally inflicts critical damage to the oxidative phosphorylation machinery and mitochondrial DNA (mtDNA). The latter part of the article is a catalogue showing the accumulating evidence in favour of oxidative inactivation of mitochondrial functions in aged brain and the detailed reports of various studies with antioxidant supplementation claiming variable success in preventing the age-related brain mitochondrial decay and cognitive decline. The antioxidant supplementation approach may be of potential help in the management of neurodegenerative diseases like Alzheimer's disease. The newly developed mitochondria-targeted antioxidants have brought a new direction to experimental studies related to oxidative damage and they may provide potential drugs in near future for a variety of diseases or degenerative conditions including brain aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sasanka Chakrabarti
- Correspondence should be addressed to: Dr. Sasanka Chakrabarti, Department of Biochemistry, Institute of Postgraduate Medical Education and Research, Kolkata: 700020, India.
| | | | | | | | | | | |
Collapse
|
26
|
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:320-30. [PMID: 20624441 DOI: 10.1016/j.pnpbp.2010.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 07/05/2010] [Indexed: 01/16/2023]
Abstract
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warszawa, Poland.
| | | |
Collapse
|
27
|
Curley JP, Mashoodh R. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents. Dev Psychobiol 2010; 52:312-30. [PMID: 20373326 DOI: 10.1002/dev.20430] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mothers and fathers do not contribute equally to the development of their offspring. In addition to the differential investment of mothers versus fathers in the rearing of offspring, there are also a number of germline factors that are transmitted unequally from one parent or the other that contribute significantly to offspring development. This article shall review four major sources of such parent-of-origin effects. Firstly, there is increasing evidence that genes inherited on the sex chromosomes including the nonpseudoautosomal part of the Y chromosome that is only inherited from fathers to sons, contribute to brain development and behavior independently of the organizing effects of sex hormones. Secondly, recent work has demonstrated that mitochondrial DNA that is primarily inherited only from mothers may play a much greater than anticipated role in neurobehavioral development. Thirdly, there exists a class of genes known as imprinted genes that are epigenetically silenced when passed on in a parent-of-origin specific manner and have been shown to regulate brain development and a variety of behaviors. Finally, there is converging evidence from several disciplines that environmental variations experienced by mothers and fathers may lead to plasticity in the development and behavior of offspring and that this phenotypic inheritance can be solely transmitted through the germline. Mechanistically, this may be achieved through altered programming within germ cells of the epigenetic status of particular genes such as retrotransposons and imprinted genes or potentially through altered expression of RNAs within gametes.
Collapse
Affiliation(s)
- J P Curley
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
28
|
Ogasawara E, Nakada K, Hayashi JI. Lactic acidemia in the pathogenesis of mice carrying mitochondrial DNA with a deletion. Hum Mol Genet 2010; 19:3179-89. [PMID: 20538883 DOI: 10.1093/hmg/ddq228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lactic acidemia is one manifestation of the mitochondrial diseases caused by pathogenic mutant mitochondrial DNA (mtDNA). However, little is known about its chronic effects in the progression of mitochondrial disease phenotypes. To obtain experimental evidence on this point, we used trans-mitochondrial model mice (mito-mice) heteroplasmic for wild-type and deleted mtDNA (DeltamtDNA). Mito-mice carrying predominantly DeltamtDNA showed mitochondrial respiration defects and the resultant disease phenotypes, including lactic acidemia; they also showed a decrease in mitochondrial biogenesis regulated by the peroxisome proliferative activated receptor gamma, coactivator 1 alpha (PGC1alpha)-mediated pathway, such as the expression of mitochondrial transcription factor A and mtDNA-encoded gene products and the control of mtDNA content. When the accelerated lactate production of these mito-mice was pharmacologically inhibited by sodium dichloroacetate (DCA), the decrease in mitochondrial biogenesis improved, thus leading to the relaxation of mitochondrial respiration defects and extension of life span. These results showed that chronic overproduction of lactate caused by metabolic adaptation in mitochondrial diseases further deconditioned mitochondrial function. Mitochondrial respiration defects in mitochondrial diseases are therefore induced not only directly by the presence of mutant mtDNA, but also by the chronic lactic acidemia. Our in vivo study also suggested that inhibition of chronic lactic acidemia is a potential strategy for treating some mitochondrial diseases.
Collapse
Affiliation(s)
- Emi Ogasawara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
29
|
Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 2010; 4:15. [PMID: 20577636 PMCID: PMC2889723 DOI: 10.3389/fnint.2010.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
The neocortex plays a critical role in the gradual formation and storage of remote declarative memories. Because the circuitry mechanisms of systems-level consolidation are not well understood, the precise cortical sites for memory storage and the nature of enduring memory correlates (mnemonic plasticity) are largely unknown. Detailed maps of neuronal activity underlying recent and remote memory recall highlight brain regions that participate in systems consolidation and constitute putative storage sites, and thus may facilitate detection of mnemonic plasticity. To localize cortical regions involved in the recall of a spatial memory task, we trained rats in a water-maze and then mapped mRNA expression patterns of a neuronal activity marker Arc/Arg3.1 (Arc) upon recall of recent (24 h after training) or remote (1 month after training) memories and compared them with swimming and naive controls. Arc gene expression was significantly more robust 24 h after training compared to 1 month after training. Arc expression diminished in the parietal, cingulate and visual areas, but select segments in the prefrontal, retrosplenial, somatosensory and motor cortical showed similar robust increases in the Arc expression. When Arc expression was compared across select segments of sensory, motor and associative regions within recent and remote memory groups, the overall magnitude and cortical laminar patterns of task-specific Arc expression were similar (stereotypical). Arc mRNA fractions expressed in the upper cortical layers (2/3, 4) increased after both recent and remote recall, while layer 6 fractions decreased only after the recent recall. The data suggest that robust recall of remote memory requires an overall smaller increase in neuronal activity within fewer cortical segments. This activity trend highlights the difficulty in detecting the storage sites and plasticity underlying remote memory. Application of the Arc maps may ameliorate this difficulty.
Collapse
Affiliation(s)
- Pavel A Gusev
- Blanchette Rockefeller Neurosciences Institute Rockville, MD, USA
| | | |
Collapse
|
30
|
Mancuso M, Calsolaro V, Orsucci D, Carlesi C, Choub A, Piazza S, Siciliano G. Mitochondria, cognitive impairment, and Alzheimer's disease. Int J Alzheimers Dis 2009; 2009. [PMID: 20798880 PMCID: PMC2925259 DOI: 10.4061/2009/951548] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023] Open
Abstract
To date, the beta amyloid (Abeta) cascade hypothesis remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is unclear. The "mitochondrial cascade hypothesis" could explain many of the biochemical, genetic, and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress, and accumulation of Abeta, which in a vicious cycle reinforce the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria, and especially of the mtDNA, in the cascade of events leading to neurodegeneration, dementia, and AD.
Collapse
Affiliation(s)
- M Mancuso
- Department of Neuroscience, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int J Biochem Cell Biol 2009; 41:1907-13. [PMID: 19464386 DOI: 10.1016/j.biocel.2009.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 12/20/2022]
Abstract
Mitochondria exist in networks that are continuously remodeled through fusion and fission. Why do individual mitochondria in living cells fuse and divide continuously? Protein machinery and molecular mechanism for the dynamic nature of mitochondria have been almost clarified. However, the biological significance of the mitochondrial fusion and fission events has been poorly understood, although there is a possibility that mitochondrial fusion and fission are concerned with quality controls of mitochondria. trans-mitochondrial cell and mouse models possessing heteroplasmic populations of mitochondrial DNA (mtDNA) haplotypes are quite efficient for answering this question, and one of the answers is "mitochondrial functional complementation" that is able to regulate respiratory function of individual mitochondria according to "one for all, all for one" principle. In this review, we summarize the observations about mitochondrial functional complementation in mammals and discuss its biological significance in pathogeneses of mtDNA-based diseases.
Collapse
|
32
|
Akers KG, Frankland PW. Grading Gradients: Evaluating Evidence for Time-dependent Memory Reorganization in Experimental Animals. J Exp Neurosci 2009. [DOI: 10.4137/jen.s2391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In humans, hippocampal damage typically produces temporally graded retrograde amnesia, with relative sparing of remote memories compared to recent memories. This observation led to the idea that as memories age, they are reorganized in a time-dependent manner. Here, we evaluate evidence for time-dependent memory reorganization in animal models. We conclude that, although hippocampal lesions may not always produce temporal gradients under all conditions, studies using alternate experimental approaches consistently support the idea that memories reorganize over time—becoming less dependent on the hippocampus and more dependent on a cortical network. We further speculate on the processes that drive memory reorganization such as sleep, memory reactivation, synaptic plasticity, and neurogenesis.
Collapse
Affiliation(s)
- Katherine G. Akers
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul W. Frankland
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institue of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|