Abstract
Hebbian plasticity is thought to require glutamate signalling. We show this is not the case for hippocampal presynaptic long-term potentiation (LTPpre), which is expressed as an increase in transmitter release probability (Pr). We find that LTPpre can be induced by pairing pre- and postsynaptic spiking in the absence of glutamate signalling. LTPpre induction involves a non-canonical mechanism of retrograde nitric oxide signalling, which is triggered by Ca2+ influx from L-type voltage-gated Ca2+ channels, not postsynaptic NMDA receptors (NMDARs), and does not require glutamate release. When glutamate release occurs, it decreases Pr by activating presynaptic NMDARs, and promotes presynaptic long-term depression. Net changes in Pr, therefore, depend on two opposing factors: (1) Hebbian activity, which increases Pr, and (2) glutamate release, which decreases Pr. Accordingly, release failures during Hebbian activity promote LTPpre induction. Our findings reveal a novel framework of presynaptic plasticity that radically differs from traditional models of postsynaptic plasticity.
Neurons communicate with one another at junctions called synapses. One neuron at the synapse releases a chemical substance called a neurotransmitter, which binds to and activates the other neuron. The release of neurotransmitter thus enables the electrical activity of one cell to influence the electrical activity of another. The efficiency of this communication can change over time, as is thought to occur during learning. If the neurons on both sides of a synapse are repeatedly active at the same time, the ability of the neurons to transmit electrical signals to each other increases.
One way that communication between neurons can become more efficient is if the first neuron becomes more likely to release neurotransmitter. Most synapses in the brain release a neurotransmitter called glutamate, and most types of learning involve changes in the efficiency of communication at glutamatergic synapses. But glutamate release is unreliable. Active glutamatergic neurons fail to release glutamate about 80% of the time. If glutamate has a key role in learning, how does the brain learn efficiently when glutamate release is so unlikely?
To find out, Padamsey et al. studied glutamatergic synapses in slices of tissue from mouse and rat brains. When both neurons at a synapse were repeatedly active at the same time, the first neuron would sometimes become more likely to release glutamate. But this only happened at synapses in which the first neuron usually failed to release glutamate in the first place. This suggests that communication failures help to drive change at synapses. When two neurons that are often active at the same time do not communicate efficiently, this failure triggers molecular changes that make future communication more reliable.
Previous results have shown that synapses can change when glutamate release occurs. The current results show that they can also change when it does not. This means that the brain can continue to learn despite frequent communication failures between neurons. Many neurological disorders, including Alzheimer’s disease, show altered glutamate signalling at synapses. Padamsey et al. hope that a better understanding of this process will lead to new therapies for these disorders.
Collapse