1
|
Sheikh-Ahmad M, Shalata Y, Bejar J, Kreizman Shefer H, Sirhan MF, Laniado M, Matter I, Agbarya A, Reut M, Yovanovich E, Saiegh L. The Correlation between Proliferative Immunohistochemical Markers and Papillary Thyroid Carcinoma Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010110. [PMID: 36676734 PMCID: PMC9862399 DOI: 10.3390/medicina59010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Background and Objectives: Papillary thyroid carcinoma (PTC) is one of the most common malignancies of the endocrine system. In order to improve the ability to predict tumor behavior, several studies have been conducted to search for surrogate prognostic immunohistochemical tumor markers. Objective: To evaluate the correlation between the intensity of different immunohistochemical marker staining in PTC and the risk for extrathyroidal extension and metastases. Materials and Methods: The study comprised patients who underwent hemi- or total thyroidectomy. Thyroid tissues were immunohistochemically stained for different tumor proliferative markers: Minichromosome maintenance proteins 2 (MCM2), Ki-67 labeling index, E-Cadherin, Neuropilin-1 and Metallothionein. The correlation between the intensity of each marker staining and the final diagnosis (benign neoplasm and PTC) and the correlation between the intensity of each staining and tumor extrathyroidal extension and metastases were evaluated. Results: The study included 66 patients. Staining for Metallothionein, E-Cadherin and MCM2 significantly differed between benign neoplasm (n = 22) and thyroid-confined PTC (n = 21) (p = 0.002, 0.004 and 0.005, respectively), between benign neoplasm and PTC with extrathyroidal extension (n = 11) (p = 0.001, 0.006 and 0.01, respectively), and between benign neoplasm and PTC with metastases (n = 12) (p = 0.01, <0.001 and 0.037, respectively). No staining correlated with extrathyroidal extension. The intensity of E-Cadherin staining was significantly lower in PTC with metastases than thyroid confined PTC and PTC with extrathyroidal extension (p = 0.028 and 0.021, respectively). Conclusions: Immunohistochemical staining for Metallothionein, E-Cadherin and MCM2 significantly distinguished between benign thyroid tumor and PTC. E-Cadherin staining significantly and inversely correlated with the presence of metastases.
Collapse
Affiliation(s)
- Mohammad Sheikh-Ahmad
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
- Correspondence: ; Tel.: +972-4-8359510; Fax: +972-4-8359519
| | - Yara Shalata
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Jacob Bejar
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Hila Kreizman Shefer
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Majd F. Sirhan
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Monica Laniado
- Department of Surgery, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Ibrahim Matter
- Department of Surgery, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Abed Agbarya
- Department of Oncology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Maria Reut
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Ekaterina Yovanovich
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Leonard Saiegh
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| |
Collapse
|
2
|
Shi P, Liu S, Xia X, Qian J, Jing H, Yuan J, Zhao H, Wang F, Wang Y, Wang X, Wang X, He M, Xi S. Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153039. [PMID: 35026265 DOI: 10.1016/j.scitotenv.2022.153039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Environmental stressors, including heavy metals, can be associated with hypertension development. However, little information regarding the dose-response relationship and toxicity mechanisms of metal mixtures with hypertension development is currently available. Therefore, we recruited 940 participants from six factories in northeastern China and measured the urinary concentrations of 19 metals. Then, we used Bayesian kernel machine regression (BKMR) to explore associations between metals co-exposure and hypertension. The BKMR model indicated a hermetic dose-response relationship between eight urinary metals (Co, Cr, Ni, Cd, As, Fe, Zn, and Pb) and hypertension risk. Moreover, heterogeneous and non-linear association patterns were detected across different metals/metalloids concentrations. Next, for the first time, we analyzed data of chemicals containing specific metal elements in the Comparative Toxicogenomics Database (CTD) from a disease perspective and provided insights from various biological levels to explain heavy metal co-exposure-related hypertension. On the molecular scale, 43 chemical components and 112 potential target genes were detected for metal exposure-related hypertension. Further, the network topology analysis indicated that target genes such as insulin (INS, degree = 78), albumin (ALB, degree = 74), renin (REN, degree = 71), interleukin-6 (IL6, degree = 70), endothelin 1 (EDN1, degree = 70), and endothelial nitric oxide synthase (NOS3, degree = 69) have a strong correlation with heavy metals co-exposure. Finally, we used integrative analyses in the adverse outcome pathway (AOP) wiki to analyze the co-exposure of heavy metals and hypertension and support an integrated metallomics approach. We selected the AOP 149 as the framework and found that the molecular initiating events (MIEs) of hypertension stems from the oxidation of AA residues on critical peptides of the NO pathway. The NOS3 was particularly promising since its subunit has three metal ion cross-linking domains with Zn2+, Fe2+, and Ga3+, which might serve as a binding site for heavy metal ions.
Collapse
Affiliation(s)
- Peng Shi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xinyu Xia
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jili Qian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hongmei Jing
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiamei Yuan
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hanqing Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fei Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xuan Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Central Hospital, Shenyang Medical College, Shenyang 110122, PR China
| | - Miao He
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Gianì F, Masto R, Trovato MA, Malandrino P, Russo M, Pellegriti G, Vigneri P, Vigneri R. Heavy Metals in the Environment and Thyroid Cancer. Cancers (Basel) 2021; 13:4052. [PMID: 34439207 PMCID: PMC8393334 DOI: 10.3390/cancers13164052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformation-prone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the "normal" range.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Roberta Masto
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | | | - Pasqualino Malandrino
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Marco Russo
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Gabriella Pellegriti
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Paolo Vigneri
- Medical Oncology and Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico Vittorio Emanuele, 95125 Catania, Italy;
| | - Riccardo Vigneri
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
- Consiglio Nazionale delle Ricerche, Cristallography Institute, Catania Section, via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
4
|
Nwadiugwu MC. Thyroid Tumor: Investigating MicroRNA-21 Gene Suppression in FTC and FTA. Cancer Inform 2020; 19:1176935120948474. [PMID: 32821081 PMCID: PMC7412895 DOI: 10.1177/1176935120948474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) are malignant and benign thyroid neoplasms, respectively. MicroRNA (miRNA) expressions have been touted as an indicator for prognostic outcome in thyroid cancer. The study objective was to explore genes suppressed by miRNA-21-3p and miRNA-21-5p for potential therapeutic insights. Differentially expressed genes and their functional enrichment were obtained from 25 FTA and 27 FTC gene microarray dataset GSE82208 using R and Bioconductor tools. The miRNA target sites were obtained from miR-TarBase database. A unique gene list of differentially expressed FTC and FTA were entered into miR-TarBase database to obtain target genes for both miRNA-21-3p and miRNA-21-5p. The result showed that miRNA-21-3p and miRNA-21-5p downregulated TIMP3, MAT2A, TGFBR2, and PLAT gene in FTC and FTA leading to significant expression of acute phase-response to metallothionein, metal ions, and unfolded protein response (UPR). The computational analysis suggests that the suppression of miRNA-21-3p and miRNA-21-5p could be an intervention strategy for therapeutically targeting FTC and FTA treatments.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Department of Biomedical Informatics, University of Nebraska, Omaha, NE, USA
| |
Collapse
|
5
|
Wang X, Dong W, Yuan B, Yang Y, Yang D, Lin X, Chen C, Zhang W. Vitamin E confers cytoprotective effects on cardiomyocytes under conditions of heat stress by increasing the expression of metallothionein. Int J Mol Med 2016; 37:1429-36. [PMID: 27035111 DOI: 10.3892/ijmm.2016.2543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/18/2016] [Indexed: 11/05/2022] Open
Abstract
Heat stress (HS) is commonly used to refer to the heat load that an individual is subjected to due to either metabolic heat, or environmental factors, including high temperatures and high humidity levels. HS has been reported to affect and even damage the functioning of various organs; overexposure to high temperatures and high humidity may lead to accidental deaths. It has been suggested that the cardiovascular system is primarily targeted by exposure to HS conditions; the HS-induced dysfunction of cardiomyocytes, which is characterized by mitochondrial dysfunction, may result in the development of cardiovascular diseases. The excessive production of reactive oxygen species (ROS) also participates in mitochondrial dysfunction. However, effective methods for the prevention and treatment of mitochondrial and cardiovascular dysfunction induced by exposure to HS are lacking. In the present study, we hypothesized that vitamin E (VE), an antioxidant, is capable of preventing oxidative stress and mitochondrial injury in cardiomyocytes induced by exposure to HS. The results revealed that pre‑treatment with VE increased the expression of metallothionein (MT), which has previously been reported to confer cytoprotective effects, particularly on the cardiovascular system. Pre-treatment with VE restored mitochondrial function in cardiomyocytes under conditions of HS by increasing the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), and by increasing adenosine triphosphate (ATP) levels. Furthermore, pre-treatment with VE decreased the production of ROS, which was induced by exposure to HS and thus exerted antioxidant effects. In addition, pre-treatment with VE attenuated oxidative stress induced by exposure to HS, as demonstrated by the increased levels of antioxidant enzymes [superoxide dismutase (SOD) and glutathione (GSH)], and by the decreased levels of markers of oxidative injury [malondialdehyde (MDA) and lactate dehydrogenase (LDH)]. Taken together, these findings suggest that pre-treatment with VE can prevent mitochondrial dysfunction and oxidative stress in cardiomyocytes induced by exposure to HS, by increasing the expression of MT.
Collapse
Affiliation(s)
- Xiaowu Wang
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Wenpeng Dong
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Binbin Yuan
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yongchao Yang
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dongpeng Yang
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xi Lin
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Changfu Chen
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Weida Zhang
- Center of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
6
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The Role of Metallothioneins in Carcinogenesis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016. [DOI: 10.1007/978-3-319-27472-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins in Normal and Cancer Cells. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 218:1-117. [PMID: 26847563 DOI: 10.1007/978-3-319-27472-0_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are low molecular weight proteins, which are present in almost all types of organisms. In mammals, four main MT isoforms designated from MT-1 to MT-4 were identified. Their biological role, according to their characteristic structure, was shown to be mostly associated with cellular metabolism of metal ions, especially zinc. Moreover, the available evidence suggests broad regulatory properties of MTs in the control of cell senescence and various pathological processes including neurodegeneration, cardiovascular pathology, metabolic disorders, and various malignancies. This extensive review provides general in formation on the structure of MT family members and the cellular functions of MT-1, MT-2, and MT-4 isoforms as well as insights into divergent biological roles of MT-3. Due to the involvement of MT molecules in various processes related to carcinogenesis, an organ-specific presentation of current data concerning their potential impact on the progression of various tumors is given. The regulatory role of MT family members in the function of the immune system is also discussed in depth.
Collapse
Affiliation(s)
- Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Christopher Kobierzycki
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Mariusz Stasiolek
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | | |
Collapse
|
8
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Metallothionein 3 expression in normal skin and malignant skin lesions. Pathol Oncol Res 2015; 21:187-93. [PMID: 25015776 PMCID: PMC4287679 DOI: 10.1007/s12253-014-9805-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/28/2014] [Indexed: 11/13/2022]
Abstract
Metallothionein-3 (MT-3) has been shown to be expressed in several malignancies and to have an impact on patients’ survival in breast and urinary bladder cancer cases. However, its expression has not been determined in normal skin or in its malignant lesions. MT-3 expression was studied using immunohistochemistry in 17 cases of normal skin, 18 of actinic keratosis (AK), 39 of squamous cell carcinoma (SCC), and 23 of basal cell carcinoma (BCC). Low MT-3 expression was observed in normal skin epidermis with faint or no expression in the epidermis basal layer. Significantly higher MT-3 expression was noted in AK (P = 0.007) and SCC (P < 0.0001), as compared with normal skin epidermis. BCC cases were characterized by the lowest MT-3 expression of all the examined groups, which was significantly lower in comparison to normal skin epidermis, AK, and SCC (P = 0.009; P < 0.0001 and P < 0.0001, respectively). In conclusion, MT-3 may be involved in the development of SCC.
Collapse
|
10
|
Kmiecik AM, Pula B, Suchanski J, Olbromski M, Gomulkiewicz A, Owczarek T, Kruczak A, Ambicka A, Rys J, Ugorski M, Podhorska-Okolow M, Dziegiel P. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression. PLoS One 2015; 10:e0124865. [PMID: 25933064 PMCID: PMC4416915 DOI: 10.1371/journal.pone.0124865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients' shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases.
Collapse
Affiliation(s)
- Alicja M. Kmiecik
- Laboratory of Glycobiology and Cell Interactions, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Medical University, Wroclaw, Poland
| | - Jaroslaw Suchanski
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mateusz Olbromski
- Department of Histology and Embryology, Medical University, Wroclaw, Poland
| | | | - Tomasz Owczarek
- Laboratory of Glycobiology and Cell Interactions, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Kruczak
- Department of Tumor Pathology, Maria Sklodowska–Curie Memorial Cancer Center and Institute of Oncology, Krakow, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Sklodowska–Curie Memorial Cancer Center and Institute of Oncology, Krakow, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Maria Sklodowska–Curie Memorial Cancer Center and Institute of Oncology, Krakow, Poland
| | - Maciej Ugorski
- Laboratory of Glycobiology and Cell Interactions, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Piotr Dziegiel
- Department of Histology and Embryology, Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
- * E-mail:
| |
Collapse
|