1
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
2
|
Li N, Zhou H, Holden VK, Deepak J, Dhilipkannah P, Todd NW, Stass SA, Jiang F. Streptococcus pneumoniae promotes lung cancer development and progression. iScience 2023; 26:105923. [PMID: 36685035 PMCID: PMC9852931 DOI: 10.1016/j.isci.2022.105923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/12/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae (SP) is associated with lung cancer, yet its role in the tumorigenesis remains uncertain. Herein we find that SP attaches to lung cancer cells via binding pneumococcal surface protein C (PspC) to platelet-activating factor receptor (PAFR). Interaction between PspC and PAFR stimulates cell proliferation and activates PI3K/AKT and nuclear factor kB (NF-kB) signaling pathways, which trigger a pro-inflammatory response. Lung cancer cells infected with SP form larger tumors in BALB/C mice compared to untreated cells. Mice treated with tobacco carcinogen and SP develop more lung tumors and had shorter survival period than mice treated with the carcinogen alone. Mutating PspC or PAFR abolishes tumor-promoting effects of SP. Overabundance of SP is associated with the survival. SP may play a driving role in lung tumorigenesis by activating PI3K/AKT and NF-kB pathways via binding PspC to PAFR and provide a microbial target for diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huifen Zhou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Van K. Holden
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Janaki Deepak
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pushpa Dhilipkannah
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nevins W. Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A. Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
4
|
Deuster E, Hysenaj I, Kahaly M, Schmoeckel E, Mayr D, Beyer S, Kolben T, Hester A, Kraus F, Chelariu-Raicu A, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. The Platelet-Activating Factor Receptor's Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells 2021; 10:cells10092337. [PMID: 34571986 PMCID: PMC8466210 DOI: 10.3390/cells10092337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The platelet-activating factor receptor (PAFR) and its ligand (PAF) are important inflammatory mediators that are overexpressed in ovarian cancer. The receptor is an important player in ovarian cancer development. In this study, we aimed to evaluate the prognostic value of PAFR in epithelial ovarian cancer (EOC) and the potential use of its antagonist, rupatadine, as an experimental treatment. Tissue microarrays of ovarian cancer patients, most markedly those with a non-mucinous subtype, immunohistochemically overexpressed PAFR. Elevated cytoplasmic PAFR expression was found to significantly and independently impair patients' overall and recurrence-free survival (OS: median 83.48 vs. 155.03 months; p = 0.022; RFS: median 164.46 vs. 78.03 months; p = 0.015). In vitro, the serous ovarian cancer subtypes especially displayed an elevated PAFR gene and protein expression. siRNA knockdown of PAFR decreased cell proliferation significantly, thus confirming the receptor's protumorigenic effect on ovarian cancer cells. The clinically approved PAFR antagonist rupatadine effectively inhibited in vitro cell proliferation and migration of ovarian cancer cells. PAFR is a prognostic marker in ovarian cancer patients and its inhibition through rupatadine may have important therapeutic implications in the therapy of ovarian cancer patients.
Collapse
Affiliation(s)
- Eileen Deuster
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Ivi Hysenaj
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.S.); (D.M.)
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.S.); (D.M.)
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Fabian Kraus
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
- Correspondence:
| |
Collapse
|
5
|
Gao RJ, Zhang AM, Jia QH, Dang ZT, Tian T, Zhang JR, Cao N, Tang XC, Ma KT, Li L, Si JQ. The promoting role of Cx43 on the proliferation and migration of arterial smooth muscle cells for angiotensin II-dependent hypertension. Pulm Pharmacol Ther 2021; 70:102072. [PMID: 34428599 DOI: 10.1016/j.pupt.2021.102072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Radiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ai-Mei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Qi-Hua Jia
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zi-Ting Dang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Commerce, Shanxi Institute of International Trade & Commerce, Xianyang, 712046, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Tian Tian
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jing-Rong Zhang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Nan Cao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xue-Chun Tang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
6
|
Yang Y, Chen Z, Hu R, Sun Y, Xiang Lv, Yan J, Jiang H. Activation of the spinal EGFR signaling pathway in a rat model of cancer-induced bone pain with morphine tolerance. Neuropharmacology 2021; 196:108703. [PMID: 34260958 DOI: 10.1016/j.neuropharm.2021.108703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Cancer-induced bone pain (CIBP) is considered to be one of the most difficult pain conditions to treat. Morphine, an analgesic drug, is widely used in clinical practice, and long-term use of morphine can lead to drug tolerance. Recent reports have suggested that inhibitors of epidermal growth factor receptor (EGFR) may have analgesic effects in cancer patients suffering from pain. Therefore, we sought to determine whether EGFR signaling was involved in morphine tolerance (MT) in a rat model of cancer-induced bone pain. In this study, Walker 256 mammary gland carcinoma cells were inoculated into the tibias of rats to provoke cancer-induced bone pain. Then, morphine was intrathecally administered twice daily for seven consecutive days to induce drug tolerance. We observed sustained increased in the protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 during the development of morphine tolerance in rats with cancer-induced bone pain by western blotting. The EGFR level was significantly increased in the MT and CIBP + MT groups, and EGFR was colocalized with markers of microglia and neurons in the spinal cords of rats. Inhibition of EGFR by a small molecule inhibitor markedly attenuated the degree of morphine tolerance and decreased the number of microglia, and the protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 were also reduced. In summary, our results suggest that the activation of the EGFR signaling pathway in spinal microglia plays an important modulatory role in the development of morphine tolerance and that inhibition of EGFR may provide a new therapeutic option for cancer-induced bone pain.
Collapse
Affiliation(s)
- Yaqiong Yang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Zhifeng Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Xiang Lv
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China.
| |
Collapse
|
7
|
Platelet-Activating Factor Acetylhydrolase Expression in BRCA1 Mutant Ovarian Cancer as a Protective Factor and Potential Negative Regulator of the Wnt Signaling Pathway. Biomedicines 2021; 9:biomedicines9070706. [PMID: 34206491 PMCID: PMC8301368 DOI: 10.3390/biomedicines9070706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrantly activated Wnt/β-catenin signaling pathway, as well as platelet-activating factor (PAF), contribute to cancer progression and metastasis of many cancer entities. Nonetheless, the role of the degradation enzyme named platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in ovarian cancer etiology is still unclear. This study investigated the functional impact of platelet-activating factor acetylhydrolase on BRCA1 mutant ovarian cancer biology and its crosstalk with the Wnt signaling pathway. PAF-AH, pGSK3β, and β-catenin expressions were analyzed in 156 ovarian cancer specimens by immunohistochemistry. PAF-AH expression was investigated in ovarian cancer tissue, serum of BRCA1-mutated patients, and in vitro in four ovarian cancer cell lines. Functional assays were performed after PLA2G7 silencing. The association of PAF-AH and β-catenin was examined by immunocytochemistry. In an established ovarian carcinoma collective, we identified PAF-AH as an independent positive prognostic factor for overall survival (median 59.9 vs. 27.4 months; p = 0.016). PAF-AH correlated strongly with the Wnt signaling proteins pGSK3β (Y216; nuclear: cc = 0.494, p < 0.001; cytoplasmic: cc = 0.488, p < 0.001) and β-catenin (nuclear: cc = 0.267, p = 0.001; cytoplasmic: cc = 0.291, p < 0.001). In particular, high levels of PAF-AH were found in tumor tissue and in the serum of BRCA1 mutation carriers. By in vitro expression analysis, a relevant gene and protein expression of PLA2G7/PAF-AH was detected exclusively in the BRCA1-negative ovarian cancer cell line UWB1.289 (p < 0.05). Functional assays showed enhanced viability, proliferation, and motility of UWB1.289 cells when PLA2G7/PAF-AH was downregulated, which underlines its protective character. Interestingly, by siRNA knockdown of PLA2G7/PAF-AH, the immunocytochemistry staining pattern of β-catenin changed from a predominantly membranous expression to a nuclear one, suggesting a negative regulatory role of PAF-AH on the Wnt/β-catenin pathway. Our data provide evidence that PAF-AH is a positive prognostic factor with functional impact, which seems particularly relevant in BRCA1 mutant ovarian cancer. For the first time, we show that its protective character may be mediated by a negative regulation of the Wnt/β-catenin pathway. Further studies need to specify this effect. Potential use of PAF-AH as a biomarker for predicting the disease risk of BRCA1 mutation carriers and for the prognosis of patients with BRCA1-negative ovarian cancer should be explored.
Collapse
|
8
|
Gao T, Zhao R, Yao L, Xu C, Cong Q, Jiang W. Platelet-activating factor induces the stemness of ovarian cancer cells via the PAF/PAFR signaling pathway. Am J Transl Res 2020; 12:7249-7261. [PMID: 33312364 PMCID: PMC7724322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) play an important role in tumor recurrence, metastasis, and chemoresistance. CSCs can shift between non-CSC and CSC states in certain tumor microenvironments. The mechanisms of this shift are not well understood. We previously demonstrated that platelet-activating factor (PAF), a lipid mediator of inflammation in the tumor microenvironment, can promote ovarian cancer progression and induce chemoresistance via PAF/PAFR-mediated inflammatory signaling pathways. Here, we investigated the role of PAF/PAFR signaling in the stemness of ovarian cancer cell. METHODS The effects of PAF and PAFR antagonists on the stemness of SKOV3 and A2780 cells were evaluated using sphere-formation assays, FACS analysis and real-time PCR in vitro and a SKOV3 tumor-formation experiment in nude mice in vivo. The potential mechanism of the PAF effect on the stemness of ovarian cancer cells was evaluated by human cytokine antibody microarray analysis. RESULTS PAF can promote spheroid formation and inhibit the transition of quiescent ovarian cancer cells into the cell cycle. The percentage of cancer stem cells increased significantly, and the expression of stemness genes increased in PAF-treated group. These effects could be blocked by PAFR inhibitors. Ginkgolide B (GB) inhibited tumor growth and decreased the CSC percentage in vivo. Human cytokine antibody microarray analysis showed that some stemness-maintaining proteins increased in PAF-treated group. CONCLUSION Our results suggest that PAF can regulate the stemness of ovarian cancer cells through the PAF/PAFR pathway, suggesting a new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Tong Gao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, People’s Republic of China
| | - Ran Zhao
- Department of Respiratory, Shanghai Children’s Hospital, Shanghai Jiaotong UniversityNo. 355 Luding Road, Shanghai 200062, People’s Republic of China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, People’s Republic of China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, People’s Republic of China
| | - Qing Cong
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, People’s Republic of China
| | - Wei Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, People’s Republic of China
| |
Collapse
|
9
|
Pinheiro KV, Thomaz A, Souza BK, Metcalfe VA, Freire NH, Brunetto AT, de Farias CB, Jaeger M, Bambini V, Smith CGS, Shaw L, Roesler R. Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma. Mol Biol Rep 2020; 47:6817-6828. [PMID: 32862352 DOI: 10.1007/s11033-020-05739-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM.
Collapse
Affiliation(s)
- Kelly V Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA 4YG, UK
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victoria Anne Metcalfe
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victorio Bambini
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Christopher G S Smith
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Lisa Shaw
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
10
|
In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv 2019; 2:1229-1242. [PMID: 29853524 DOI: 10.1182/bloodadvances.2017015610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the addition of tyrosine kinase inhibitors (TKIs) to the treatment of patients with BCR-ABL1+ B-cell precursor acute lymphoblastic leukemia (BCR-ABL1+ BCP-ALL), relapse both with and without BCR-ABL1 mutations is a persistent clinical problem. To identify BCR-ABL1-independent genetic mediators of response to the TKI dasatinib, we performed in vivo and in vitro RNA interference (RNAi) screens in a transplantable syngeneic mouse model of BCR-ABL1+ BCP-ALL. By using a novel combination of a longitudinal screen design and independent component analysis of screening data, we identified hairpins that have distinct behavior in different therapeutic contexts as well as in the in vivo vs in vitro settings. In the set of genes whose loss sensitized BCR-ABL1+ BCP-ALL cells to dasatinib, we identified Pafah1b3, which regulates intracellular levels of platelet-activating factor (PAF), as an in vivo-specific mediator of therapeutic response. Pafah1b3 loss significantly sensitized leukemia cells to the multiple TKIs, indicating that inhibition of PAFAH1B3 in combination with TKI treatment may be an effective therapeutic strategy for BCR-ABL1+ BCP-ALL patients. PAF-induced cell death as well as surface levels of PAF receptor (PAFR) in our model are altered upon dasatinib treatment and depend on the local leukemia microenvironment; the response of Pafah1b3 KO vs overexpressing cells to dasatinib is also dependent on microenvironmental context. Antagonism of the PAFR partially reverses the observed sensitization to TKI treatment upon Pafah1b3 loss in vivo, suggesting that signaling via the PAF/PAFR pathway is at least partially responsible for this effect.
Collapse
|
11
|
da Silva Junior IA, Andrade LNDS, Jancar S, Chammas R. Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics (Sao Paulo) 2018; 73:e792s. [PMID: 30328954 PMCID: PMC6157068 DOI: 10.6061/clinics/2018/e792s] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet activating factor is a lipid mediator of inflammation, and in recent decades, it has emerged as an important factor in tumor outcomes. Platelet activating factor acts by specific binding to its receptor, which is present in both tumor cells and cells that infiltrate tumors. Pro-tumorigenic effects of platelet activating factor receptor in tumors includes promotion of tumor cell proliferation, production of survival signals, migration of vascular cells and formation of new vessels and stimulation of dendritic cells and macrophages suppressor phenotype. In experimental models, blocking of platelet activating factor receptor reduced tumor growth and increased animal survival. During chemotherapy and radiotherapy, tumor cells that survive treatment undergo accelerated proliferation, a phenomenon known as tumor cell repopulation. Work from our group and others showed that these treatments induce overproduction of platelet activating factor-like molecules and increase expression of its receptor in tumor cells. In this scenario, antagonists of platelet activating factor markedly reduced tumor repopulation. Here, we note that combining chemo- and radiotherapy with platelet activating factor antagonists could be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Ildefonso Alves da Silva Junior
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Laboratorio de Imunofarmacologia, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Luciana Nogueira de Sousa Andrade
- Laboratorio de Oncologia Experimental, Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Sonia Jancar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Laboratorio de Imunofarmacologia, Sao Paulo, SP, BR
| | - Roger Chammas
- Laboratorio de Oncologia Experimental, Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
12
|
da Silva-Junior IA, Dalmaso B, Herbster S, Lepique AP, Jancar S. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death. Front Oncol 2018; 8:10. [PMID: 29459885 PMCID: PMC5807395 DOI: 10.3389/fonc.2018.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR) associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR) when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT), the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa) and squamous carcinoma cell lines (SCC90 and SCC78) express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2) in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP) were more resistant to radiation compared to those lacking the receptor (KBM). PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Barbara Dalmaso
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Suellen Herbster
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Jancar
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
GPCRs and EGFR – Cross-talk of membrane receptors in cancer. Bioorg Med Chem Lett 2017; 27:3611-3620. [DOI: 10.1016/j.bmcl.2017.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
14
|
Saygideğer-Kont Y, Minas TZ, Jones H, Hour S, Çelik H, Temel I, Han J, Atabey N, Erkizan HV, Toretsky JA, Üren A. Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer Cells. Neoplasia 2016; 18:111-20. [PMID: 26936397 PMCID: PMC5005263 DOI: 10.1016/j.neo.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022] Open
Abstract
Ezrin is a scaffolding protein that is involved in oncogenesis by linking cytoskeletal and membrane proteins. Ezrin interacts with epidermal growth factor receptor (EGFR) in the cell membrane, but little is known about the effects of this interaction on EGFR signaling pathway. In this study, we established the biological and functional significance of ezrin-EGFR interaction in non–small cell lung cancer (NSCLC) cells. Endogenous ezrin and EGRF interaction was confirmed by co-immunoprecipitation and immunofluorescent staining. When expression of ezrin was inhibited, EGFR activity and phosphorylation levels of downstream signaling pathway proteins ERK and STAT3 were decreased. Cell fractionation experiments revealed that nuclear EGFR was significantly diminished in ezrin-knockdown cells. Consequently, mRNA levels of EGFR target genes AURKA, COX-2, cyclin D1, and iNOS were decreased in ezrin-depleted cells. A small molecule inhibitor of ezrin, NSC305787, reduced EGF-induced phosphorylation of EGFR and downstream target proteins, EGFR nuclear translocation, and mRNA levels of nuclear EGFR target genes similar to ezrin suppression. NSC305787 showed synergism with erlotinib in wild-type EGFR-expressing NSCLC cells, whereas no synergy was observed in EGFR-null cells. Phosphorylation of ezrin on Y146 was found as an enhancer of ezrin-EGFR interaction and required for increased proliferation, colony formation, and drug resistance to erlotinib. These findings suggest that ezrin-EGFR interaction augments oncogenic functions of EGFR and that targeting ezrin may provide a potential novel approach to overcome erlotinib resistance in NSCLC cells.
Collapse
Affiliation(s)
- Yasemin Saygideğer-Kont
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA; Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Hayden Jones
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Sarah Hour
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Idil Temel
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Nese Atabey
- Department of Medical Biology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | | | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
15
|
Ji W, Chen J, Mi Y, Wang G, Xu X, Wang W. Platelet-activating factor receptor activation promotes prostate cancer cell growth, invasion and metastasis via ERK1/2 pathway. Int J Oncol 2016; 49:181-8. [PMID: 27176648 DOI: 10.3892/ijo.2016.3519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
Abstract
Platelet-activating factor (PAF) and its receptor (PAFR), have been reported to participate in many cellular processes of cancer. However, little is known about their function in prostate cancer. In the present study, we found that PAFR was overexpressed in prostate cancer cells. PAF stimulation dose-dependently promoted the invasion, migration and growth of prostate cancer cells in vitro, while knockdown of PAFR inhibited the effect of PAF on prostate cancer cells. We further found that PAFR promoted prostate cancer cell growth and metastasis in vivo. Moreover, we found that PAFR activation increased MMP-3 expression and decreased E-cadherin expression of prostate cancer cells in vitro and in vivo. Finally, we found that PAFR time-dependently induced activation of ERK1/2, and ERK1/2 pathway contributed to PAFR-mediated prostate cancer cell invasion, migration and growth. Together, our findings demonstrate that PAFR can activate ERK1/2 pathway, and subsequently increase MMP-3 expression and decrease E-cadherin expression, which finally promote prostate cancer cell growth, invasion and metastasis. Thus, PAFR may act as a potential target for therapeutic use of prostate cancer.
Collapse
Affiliation(s)
- Wenbin Ji
- Department of Radiology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jin Chen
- Department of Radiology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yucheng Mi
- Department of Radiology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Guanliang Wang
- Department of Radiology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Xinjian Xu
- Department of Radiology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Weizhen Wang
- Department of Neurology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
16
|
Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation. Gene 2016; 585:58-64. [PMID: 26995654 DOI: 10.1016/j.gene.2016.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 01/15/2023]
Abstract
Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer.
Collapse
|
17
|
Tu Z, Xiao R, Xiong J, Tembo KM, Deng X, Xiong M, Liu P, Wang M, Zhang Q. CCR9 in cancer: oncogenic role and therapeutic targeting. J Hematol Oncol 2016; 9:10. [PMID: 26879872 PMCID: PMC4754913 DOI: 10.1186/s13045-016-0236-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/10/2022] Open
Abstract
Cancer is currently one of the leading causes of death worldwide and is one of the most challenging major public health problems. The main challenges faced by clinicians in the management and treatment of cancer mainly arise from difficulties in early diagnosis and the emergence of tumor chemoresistance and metastasis. The structures of chemokine receptor 9 (CCR9) and its specific ligand chemokine ligand 25 (CCL25) have been elucidated, and, interestingly, a number of studies have demonstrated that CCR9 is a potential tumor biomarker in diagnosis and therapy, as it has been found to be highly expressed in a wide range of cancers. This expression pattern suggests that CCR9 may participate in many important biological activities involved in cancer progression. Researchers have shown that CCR9 that has been activated by its specific ligand CCL25 can interact with many signaling pathways, especially those involved in tumor chemoresistance and metastasis. This review, therefore, focuses on CCR9 induction activity and summarizes what is currently known regarding its role in cancers and its potential application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Kingsley M Tembo
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Xinzhou Deng
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Meng Xiong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Pan Liu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Meng Wang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
18
|
Zheng X, Zhang L, Jin B, Zhang F, Zhang D, Cui L. Knockdown of protein phosphatase 5 inhibits ovarian cancer growth in vitro. Oncol Lett 2015; 11:168-172. [PMID: 26870184 DOI: 10.3892/ol.2015.3828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related mortality. Serine/threonine protein phosphatase 5 (PP5, PPP5C) has been recognized to be involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, including cell growth, differentiation, proliferation, motility and apoptosis. In this study, to evaluate the functional role of PP5 in ovarian cancer cells, lentivirus-mediated RNA interference (RNAi) was applied to silence PPP5C in the human ovarian cancer cell line CAOV-3. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell colony forming ability was measured by colony formation. Cell cycle progression was determined by propidium iodide staining and flow cytometry. The results demonstrated that lentivirus-mediated RNAi specifically suppressed the expression of PPP5C at the mRNA and protein levels in CAOV-3 cells. Further investigations revealed that PP5 knockdown significantly inhibited the proliferation and colony formation of CAOV-3 cells. Moreover, the cell cycle of CAOV-3 cells was arrested at the G0/G1 phase following PP5 knockdown. This study highlights the crucial role of PP5 in promoting ovarian cancer cell proliferation, and provides a foundation for further study into the clinical potential of lentiviral-mediated delivery of PP5 RNAi therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lianxiao Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bohong Jin
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Fubin Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Duoyi Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lining Cui
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
19
|
Yu Y, Zhang M, Zhang X, Cai Q, Zhu Z, Jiang W, Xu C. Transactivation of epidermal growth factor receptor through platelet-activating factor/receptor in ovarian cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:85. [PMID: 25261977 PMCID: PMC4189590 DOI: 10.1186/s13046-014-0085-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022]
Abstract
Background We previously identified platelet-activating factor receptor (PAFR) as being overexpressed in ovarian cancer and found that its ligand PAF evoked EGFR phosphorylation using the phospho-antibody microarray. Epidermal growth factor receptor (EGFR) are also overexpressed in ovarian cancer and contribute to the growth of ovarian cancer cells. Here, we investigated the mechanisms of crosstalk between PAFR and EGFR signaling in ovarian cancer cells to further determine whether the interaction between PAFR and EGFR synergistic contribute to the progression of ovarian cancer. Methods Expression and localization of PAFR in several ovarian cancer cell lines were assessed by Western blot, realtime-PCR and immunofluorescence. The ovarian cancer cells were stimulated with PAF or PAF and in some experiments also pharmacological inhibitors. Phosphorylation of proteins in signaling pathways were measured by Western blot. HB-EGF concentrations of the supernatant from stimulated ovarian cancer cells were measured by enzyme-linked immunosorbent assay. Results Our data show that PAF increases EGFR phosphorylation through PAFR in a time- and dose- dependent manner in SKOV-3 ovarian cancer cells. This transactivation is dependent on phospholipase C-β and intracellular calcium signaling. This pathway is also Src tyrosine kinase- and metalloproteinase- dependent. PAF triggers EGFR activation through the increased heparin-binding EGF-like growth factor (HB-EGF) release in metalloprotease-dependent manner. Several studies involving EGFR transactivation through G-protein coupled receptor (GPCR) have demonstrated EGFR-dependent increase in ERK1/2 phosphorylation. Yet in SKOV-3 cells, PAF treatment also increases ERK1/2 phosphorylation in a EGFR-independent manner. Conclusions The results suggest that in SKOV-3 ovarian cancer cells, PAF transactivates EGFR and downstream ERK pathways, thus diversifying the GPCR-mediated signal. The crosstalk between PAFR and EGFR suggests a potentially important signaling linkage between inflammatory and growth factor signaling in ovarian cancer cells.
Collapse
|