1
|
Dixon CR, Malik P, de las Heras JI, Saiz-Ros N, de Lima Alves F, Tingey M, Gaunt E, Richardson AC, Kelly DA, Goldberg MW, Towers GJ, Yang W, Rappsilber J, Digard P, Schirmer EC. STING nuclear partners contribute to innate immune signaling responses. iScience 2021; 24:103055. [PMID: 34541469 PMCID: PMC8436130 DOI: 10.1016/j.isci.2021.103055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
STimulator of INterferon Genes (STING) is an adaptor for cytoplasmic DNA sensing by cGAMP/cGAS that helps trigger innate immune responses (IIRs). Although STING is mostly localized in the ER, we find a separate inner nuclear membrane pool of STING that increases mobility and redistributes to the outer nuclear membrane upon IIR stimulation by transfected dsDNA or dsRNA mimic poly(I:C). Immunoprecipitation of STING from isolated nuclear envelopes coupled with mass spectrometry revealed a distinct nuclear envelope-STING proteome consisting of known nuclear membrane proteins and enriched in DNA- and RNA-binding proteins. Seventeen of these nuclear envelope STING partners are known to bind direct interactors of IRF3/7 transcription factors, and testing a subset of these revealed STING partners SYNCRIP, MEN1, DDX5, snRNP70, RPS27a, and AATF as novel modulators of dsDNA-triggered IIRs. Moreover, we find that SYNCRIP is a novel antagonist of the RNA virus, influenza A, potentially shedding light on reports of STING inhibition of RNA viruses.
Collapse
Affiliation(s)
- Charles R. Dixon
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Poonam Malik
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Jose I. de las Heras
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Natalia Saiz-Ros
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Eleanor Gaunt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - David A. Kelly
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Greg J. Towers
- Department of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Juri Rappsilber
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, 13355 Berlin, Germany
| | - Paul Digard
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
2
|
Valverde-Estrella L, López-Serrat M, Sánchez-Sànchez G, Vico T, Lloberas J, Celada A. Induction of Samhd1 by interferon gamma and lipopolysaccharide in murine macrophages requires IRF1. Eur J Immunol 2020; 50:1321-1334. [PMID: 32270872 DOI: 10.1002/eji.201948491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
SAMHD1 is an enzyme with phosphohydrolase activity. Mutations in SAMHD1 have been linked to the development of Aicardi-Goutières syndrome in humans. This enzyme also has the capacity to restrict HIV virus replication in macrophages. Here, we report that Samhd1 is highly expressed in murine macrophages and is regulated by proinflammatory (IFN-γ and LPS) but not by anti-inflammatory (IL-4 or IL-10) activators. The induction of Samhd1 follows the pattern of an intermediate gene that requires protein synthesis. In transient transfection experiments using the Samhd1 promoter, we found that a fragment of 27 bps of this gene, falling between -937 and -910 bps relative to the transcription start site, is required for IFN-γ-dependent activation. Using EMSAs, we determined that IFN-γ treatment led to the elimination of a protein complex. Chromatin immunoprecipitation assays and siRNA experiments revealed that IRF1 is required for IFN-γ- or LPS-induced Samhd1 expression. Therefore, our results indicate that Samhd1 is stimulated by proinflammatory agents IFN-γ and LPS. Moreover, they reveal that these two agents, via IRF1, eliminate a protein complex that may be related to a repressor, thereby, triggering Samhd1 expression.
Collapse
Affiliation(s)
- Lorena Valverde-Estrella
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Martí López-Serrat
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Sánchez-Sànchez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) family proteins methylate lysine 4 on the histone H3 tail at important regulatory regions in the genome and thereby impart crucial functions through modulating chromatin structures and DNA accessibility. Although the human KMT2 family was initially named the mixed-lineage leukaemia (MLL) family, owing to the role of the first-found member KMT2A in this disease, recent exome-sequencing studies revealed KMT2 genes to be among the most frequently mutated genes in many types of human cancers. Efforts to integrate the molecular mechanisms of KMT2 with its roles in tumorigenesis have led to the development of first-generation inhibitors of KMT2 function, which could become novel cancer therapies.
Collapse
Affiliation(s)
- Rajesh C. Rao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
- Correspondence: , Tel: (734) 6151315, Fax: (734) 7636476
| |
Collapse
|